

Latest NOvA Oscillation Results from 10 Years of Data

Jianming Bian for the NOvA Collaboration University of California, Irvine

10-22-2024

PIC 2024, NCSR Demokritos, Athens, Greece

NuMI Off-Axis v_e Appearance Experiment (NOvA)

- Muon neutrino beam at Fermilab near Chicago
- Longest baseline in operation (810 km), large matter effect, sensitive to mass ordering
- Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation maximum

Neutrino Beam Performance

MW capable target, horn installed in 2019-2020

Upgraded beamline targets, horns and accelerator

~megawatt beam achieved:

- Regular ~900 kW
- Record 959 kW

- 2014-2023: 10 years of beam to NOvA
- Neutrino beam data: 26.6x10²⁰ Protons on Target (POT), (+96%)
- Antineutrino data: 12.5 x 10²⁰ POT

NOvA Detectors

3.87 cm

Far Detector (FD):

- 14-kton, fine-grained
- 344k detector cells
- 0.3-kton functionally identical Near Detector (ND), ~20k cells

Far Detector, 14 kt, 60 m x 15.6 m x 15.6 m

> Near Detector 14.3mx4.1mx4.1m

- Each cell: filled with liquid scintillator, has wavelength-shifting fiber (WLS) routed to Avalanche Photodiode (APD)
- Cells arranged in planes, assembled in alternating vertical and horizontal directions
 → 3-D information of neutrino interactions

6.0 cm

To APD Readout

Scintillation Light

Particle Trajectory

Plane of vertical cells

Plane of horizontal cells

Waveshifting

Fiber Loop

NOvA Detectors

Outfitted Far Detector

Deep-Learning based neutrino classifier (PID)

- CVN: a convolutional neural network (CNN), based on modern image recognition technology, A. Aurisano et. al, JINST 11, P09001 (2016)
- Extract features directly from pixel maps
- New cosmic rejection CVN used for 2024 analysis

beam with CVN in Near Detector (ND) and Far Detector (FD)

Expanding v_e selection

Maximum mass ordering sensitivity from $v_e - \overline{v_e}$ asymmetry in low energy region (E<1GeV), previously removed

- New BDT to retrain low energy v_e events, neutrino (FHC) only for now
- Increases mass ordering sensitivity by ~few%

Near detector observations

ND spectra reflect unoscillated beam

Extrapolate to FD for $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance and $\nu_{e}/\bar{\nu}_{e}$ appearance signals Extrapolate to FD to constrain dominant (50%/70%) beam backgrounds in $\nu_e/\bar{\nu}_e$ appearance

Far/Near detector extrapolation

Correct ND simulation with data

Far/Near extrapolation: adjust for beam divergence, detector acceptance; apply oscillations

FD prediction

Systematic uncertainties

Far Detector $v_{\mu}(\bar{v_{\mu}})$ **Observations**

• Observed $v_{\mu}(\bar{v_{\mu}})$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6 × 10²⁰ POT and anti-neutrino beam exposure of 12.5 × 10²⁰ POT)

Far Detector $v_e(v_e)$ Observations

• Observed $v_e(v_e)$ candidates from 10 years of NOvA Data (neutrino beam exposure of 26.6×10^{20} POT and anti-neutrino beam exposure of 12.5×10^{20} POT)

181 ve data candidates (61.7 background)

Extracting Oscillation parameters

- Joint fit to $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance and $\nu_{e}/\bar{\nu}_{e}$ appearance to extract: Δm^{2}_{32} , $\sin^{2}2\theta_{23}$, δ_{CP} , Mass Hierarchy, octant of θ_{23}
- Solar parameters Δm_{12}^2 , θ_{23} : constrained to PDG values
- Reactor constraints:
 - Unconstrained
 - Daya Bay 1D constraint: $sin^22\theta_{13}=0.0851\pm0.0024$
 - Daya Bay 2D constraints: Δm^2_{32} , θ_{13}

Statistical methods:

- Bayesian: Markov Chain Monte Carlo for marginalization arXiv:2311.07835
- Frequentist: minimum χ² test with profiled Feldman-Cousins method, arXiv:2207.14353

v2 - v3 mixing

Mild Upper Octant preference (69% prob; Bayes factor = 2.2)

Mass ordering and CPV

NOvA vs. other data favor different regions in NO, same region in IO

Mass ordering and CPV

Summary and Prospect

- NOvA 2024 results: First new NOvA neutrino oscillation measurement since 2020, with doubled neutrino beam dataset
- Most precise single-experiment measurement of Δm_{32}^2 (1.5%)
- With reactor constraints on θ_{13} and Δm^2_{32} :
 - Upper Octant preference to 69% odds
 - Normal Ordering preference to 87% odds.
- Aim to double of antineutrino data before 2027 crucial to clarify MO/CPV
- Test beam constraints on energy scales expected in near future

v2 - v3 mixing

Mild Upper Octant preference (69% prob; Bayes factor = 2.2) emerges from applying reactor constraint (due to correlation between θ_{13} and θ_{23} , see overflow)

Maximal mixing is allowed at $<1\sigma$