

Recent results from MicroBooNE

Holly Parkinson

(on behalf of the MicroBooNE Collaboration)

University of Edinburgh

23rd October 2024

THE UNIVERSITY of EDINBURGH

Outline

- The MicroBooNE detector
- Analysis techniques
- Physics at MicroBooNE

'EDINBURGH

- MiniBooNE LEE
- BSM Searches
- Cross sections
- Future analyses

úBoo

The MicroBooNE Detector

• The Micro Booster Neutrino Experiment is part of the Fermilab SBN (Short Baseline Neutrino) Program

MicroBooNE 470 m from BNB target ~680 m from NuMI target

- Operated from 2015 2021
 - Large, well-understood dataset of neutrino-argon interactions

One detector, two beams

- MicroBooNE receives neutrinos from two beams:
 - Booster Neutrino Beam (BNB)
 - target 470 m from MicroBooNE, on axis
 - 8 GeV protons, Be target
 - $< E_{\nu_{\mu}} >$ = 800 MeV
 - 0.5% v_e and $\overline{v_e}$, 99.5% v_μ and $\overline{v_\mu}$
 - Neutrinos at the Main Injector (NuMI)
 - target ~ 680 m from MicroBooNE, off axis (8°)
 - 120 GeV protons, C target
 - $< E_{\nu_e} > = 650 \text{ MeV}$
 - 4.5% v_e and $\overline{v_e}$, 95.5% v_μ and $\overline{v_\mu}$

The MiniBooNE Low Energy Excess (LEE)

1.4

3.0

misid

LArTPCs

DUNE will use this technology!

- Liquid Argon Time Projection Chambers
 - Charge drifted and collected to precisely reconstruct track positions and calorimetry
 - Light used to identify times and reject nonbeam background
- MicroBooNE has...
 - 85 tonne active volume
 - 3 planes of wires (vertical, +60°, -60°), 3 mm spacing, for charge collection
 - 32 PMTs to detect scintillation photons

EDINBURGH

MicroBooNE's LArTPC Capabilities

- mm-level spatial resolution
 - 3D interaction images
- Fully active tracking calorimeter: precise energy resolution
- Excellent particle identification
 - Including distinguishing electrons from photons
- Cosmic Ray Tagger (CRT) installed around cryostat to improve cosmic background rejection

Analysis techniques

Our latest developments in LArTPC physics:

We have a history of developing physics analysis tools, and post-operation R&D studies are currently ongoing

Physics with MicroBooNE

Physics with MicroBooNE

The MiniBooNE Low Energy Excess (LEE)

2022 results disfavoured an electron-like explanation for the LEE → Electron excess rejected at > 97% CL (Phys. Rev. D105, 112004 (2022), Phys. Rev. Lett. 128, 241801 (2022))

- New 2024 analysis uses full MicroBooNE dataset: 1.11 × 10²¹ POT
 - Uses CRT, new LEE model, represents LEE as a function of shower energy and angle
 ve CC
 v

Excludes the ν_e interpretation of the MiniBooNE LEE at ≥ 99% CL in all investigated variables (inc. electron angle and energy variables)

DINBURGH

BSM as LEE exploration

3+1 Sterile Neutrinos

Excess may be due to oscillation to new neutrino flavour (sterile

significantly improved sensitivity by combining BNB and NuMI data: new analysis will be sensitive to more LSND parameter space

MICROBOONE-NOTE-1116-PUB, MICROBOONE-NOTE-1132-PUB

Dark Sector e⁺e⁻ Final States

dark sector parameter space

MICROBOONE-NOTE-1124-PUB

Physics with MicroBooNE

BSM: searches for new physics

- Beyond the Standard Model
- In a neutrino beamline, we produce many kaons and pions
 - These decay producing neutrinos, but could produce something else...

• MicroBooNE has world leading limits in searches for new particles in $\mathcal{O}(10 \text{ MeV}) - 300 \text{ MeV}$ range under several phenomenological models

BSM: searches for new physics

Higgs portal scalar (HPS) decays

- Strongest limits to date on mixing angle θ for new scalar particle, S, mixing with the Higgs field
 - $\theta < 2.48 \times 10^{-4}$ ($\theta < 1.60 \times 10^{-4}$) at the 95% confidence level at m_s = 125 MeV (m_s = 150 MeV)

K

MicroBooNE Public Note

BSM: searches for new physics

Heavy neutral leptons (HNLs)

- Search for HNL decays to $\mu^{\pm}\pi^{\mp}$ pairs
 - order of magnitude improvement on previous MicroBooNE results: similar sensitivity to NA62

Majorana HNL mass (MeV)	Upper limit on mixing parameter $\left U_{\mu 4} \right ^2$
246	12.9 x 10 ⁻⁸
385	0.92 x 10 ⁻⁸

Physics with MicroBooNE

Cross sections

- MicroBooNE possesses a large , well-understood neutrino-argon interaction dataset after 5 years of data taking
 - Accurate energy reconstruction for kinematics
- Over 20 ν -Ar cross sections published
- Important to further our understanding of neutrino-argon interactions for future liquid argon experiments, such as DUNE

First CC π^0 /NC π^0 differential cross sections

- π^0 are an important background in ν_e searches
 - A π^0 interaction produces 2 showers, but if 1 is missed, it can look like a ν_e interaction

This could be because...

- \rightarrow energy is too low (less common in MicroBooNE: low thresholds)
- \rightarrow one shower has left the detector
- \rightarrow showers may be on top of each other

First CC π^0 /NC π^0 differential cross sections

CCπ⁰

Differential cross sections in muon momentum, neutrino-muon scattering angle, and muon-pion opening angle

arXiv:2404.09949

Double-differential cross section in $cos(\theta_{\pi^0})$ and P_{π^0} also published arXiv:2404.10948

CC1p cross sections using kinematic imbalance

• first flux-integrated single and double-differential cross section measurements in these variables using v_u -Ar CC1p0 π interactions

flux-integrated single-differential cross section, clear model discrimination; double-differential also presented

Phys. Rev. D 109, 092007

 $v_e/\overline{v_e}$ cross sections

- Due to being off-axis, NuMI provides MicroBooNE a higher flux of v_e and $\overline{v_e}$
 - Neutrino cross sections probe nuclear effects, needed for DUNE oscillation experiments
- Inclusive measurements of $v_e + \overline{v_e}$, performed; exclusive v_e and $\overline{v_e}$ measurements in progress
- BNB has smaller v_e content, but exclusive measurements are possible!
- Currently measurements of $v_e/\overline{v_e}$ cross sections using the full MicroBooNE dataset are in progress

Unfolded inclusive v_e and $\overline{v_e}$ charged current differential cross section

Phys. Rev. D 105, L051102 (2022)

Unfolded differential exclusive v_e cross section (1eNp0 π)

Phys. Rev. D 106, L051102 (2022)

Neutron identification

Newest paper at time of making these slides!

- Neutrons found using secondary protons separated from neutrino vertex
 - Applicable to any LArTPC
 - Measures neutron production from neutrinos; could provide statistical separation between neutrinos and antineutrinos
- Prospects for efficiency improvement

MicroBooNE's accomplishments

µBooNE

H. B. Parkinson - 23/10/2024 - PIC 2024 Athens

Summary

- MicroBooNE is a LArTPC neutrino detector based at Fermilab
 - Large, well-understood neutrino-argon interaction dataset
- We are a very active collaboration with recent results in several areas of physics!
- Further analyses aim to utilise the full dataset, incorporate NuMI and BNB data together, and implement updated NuMI flux
- The detector is currently in a decommissioning R&D phase, results to come soon

Thank you!

H. B. Parkinson - 23/10/2024 - PIC 2024 Athens

Backup

Electron-photon separation

⁴⁴ Two key features are used to achieve electron-photon separation: the calorimetric measurement of dE/dx at the start of the shower and the displacement of the electromagnetic shower's start position from the primary vertex in neutrino interactions with hadronic activity. To evaluate dE/dx, reconstructed showers are fit using a Kalman filter [59] based procedure to identify the main shower trunk and reject hits that are transversely or longitudinally displaced. ,

Phys. Rev. D105, 112004 (2022)

MicroBooNE's cross section papers

Already Public Results

CC inclusive

• 1D ν_{μ} CC inclusive @ BNB, Phys. Rev. Lett. 123, 131801

- 1D ν_{μ} CC E_v @ BNB, Phys. Rev. Lett. 128, 151801
- 3D CC E, @ BNB, arXiv:2307.06413
- 1D ν_{p} CC inclusive @ NuMI, Phys. Rev. D104, 052002

Phys. Rev. D105, L051102

• 2D ν_{μ} CC0pNp inclusive @ BNB, arXiv:2402.19216, arXiv:2402.19281

Pion production

- ν_{μ} NC π^{0} @ BNB, <u>Phys. Rev. D 107, 012004</u> 2D ν_{μ} NC π^{0} @ BNB, <u>arXiv:2404.10948</u>
- $\nu_{\mu} CC \pi^0$ @ BNB, <u>arXiv:2404.09949</u>

- **µBooNE** $CC0\pi$ • 1D ν_{a} CCNp0 π @ BNB, Phys. Rev. D 106, L051102 • 1D & 2D ν_{μ} CC1p0 π transverse imbalance @ BNB, Phys. Rev. Lett. 131, 101802 Phys. Rev. D 108, 053002 • 1D & 2D ν_{μ} CC1p0 π generalized imbalance @ BNB, Phys. Rev. D 109, 092007 • $1D \nu_{\mu} CC1p0\pi @ BNB, Phys. Rev. Lett. 125, 201803$ • 1D ν_{μ} CC2p @ BNB, <u>arXiv:2211.03734</u> • 1D ν_{μ} CCNp0 π @ BNB, <u>Phys. Rev. D102, 112013</u> • 2D ν_{μ} CCNp0 π @ BNB, <u>arXiv:2403.19574</u> Rare channels & novel identification techniques • η production @ BNB, <u>Phys. Rev. Lett. 132, 151801</u>
 - Λ production @ NuMI, Phys. Rev. Lett. 130, 231802
 - Neutron identification, arXiv:2406.10583

A. Papadopoulou, Neutrino 24

Beam fluxes

Beam fluxes

