

Prospects for neutrinos from natural sources in JUNO

Elisa Percalli on behalf of the JUNO collaboration

JUNO experiment

A multipurpose neutrino detector

JUNO experiment Now under construction in China, in a
 Now under construction in China, in a 700m deep underground laboratory

- **20k tons** of liquid scintillator
- **17612** 20'' PMTs and **25600** 3″ PMTs
- 17.7 m radius for acrylic sphere
- PMT optical coverage 78%
- \bullet High light yield scintillator (10⁴ emitted photons/MeV)
- Water cherenkov veto detector $+$ top tracker
- Designed to reach an unprecedented **energy resolution of 3% @MeV**
- Good **radiopurity** expected

JUNO will start data taking in 2025

[JUNO physics and detector - Progress in Particle and Nuclear Physics](https://www.sciencedirect.com/science/article/pii/S0146641021000880) For further information see $Stefano Dusini$'s talk

Neutrino sources

Neutrino sources

[Sub-percent precision measurement of neutrino](https://iopscience.iop.org/article/10.1088/1674-1137/ac8bc9) [oscillation parameters with JUNO](https://iopscience.iop.org/article/10.1088/1674-1137/ac8bc9)

Neutrino mass ordering determination

Source: Reactor neutrinos

Energy: 1.8-10 MeV

Detection method: IBD (inverse beta decay ^{\bar{v}_e} + $p \rightarrow e^+$ + n) Optimized **distance** for NMO

See [Dmitrii Dolzhikov'](https://indico.cern.ch/event/1414470/contributions/6146855/)s talk after this

NMO with atmospheric neutrinos

Source: Decay of particles (μ, π, K) in atmosphere, within 104 -10 km from Earth surface

Energy: 10 MeV - 1 PeV

Motivation: We can probe the neutrino mass ordering through "**matter effects"**

 $P_{\text{NH}}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{\text{IH}}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$

Atmospheric neutrino energy spectrum from previous experiments

elisa.percalli@mi.infn.it PIC 2024

Normal Ordering

NMO with atmospheric neutrinos

Source: Decay of particles (μ, π, K) in atmosphere, within 104 -10 km from Earth surface

Energy: 10 MeV - 1 PeV

Motivation: We can probe the neutrino mass ordering through "**matter effects"**

 $P_{\text{NH}}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{\text{IH}}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$

Atmospheric neutrino energy spectrum from previous experiments

elisa.percalli@mi.infn.it PIC 2024

Inverted Ordering

Atmospheric neutrinos

[\[2103.09908\] JUNO sensitivity to low](https://arxiv.org/abs/2103.09908) [energy atmospheric neutrino spectra](https://arxiv.org/abs/2103.09908)

NMO with atmospheric neutrinos

Sensitivity to NMO is enhanced for neutrinos of **few GeV** at **cosθ**<**-0.8**

Solar neutrinos

Source: Nuclear fusion reactions inside the Sun

Energy: 0.1-18 MeV

Motivation: We can probe physical quantities of the Sun (e.g. **metallicty**) and neutrino oscillation $\text{parameters}~(\Delta \text{m}^2_{21}, \theta_{21})$

Energy spectra of solar neutrino production channels

[Comprehensive measurement of pp-chain solar neutrinos | Nature](https://www.nature.com/articles/s41586-018-0624-y)

The analysis strategy differs with the neutrino energies

Solar neutrinos - 7Be, pep, CNO

Low energy neutrinos (<2MeV) will be detected through **elastic scattering** on electrons

 10^{13}

 $10¹$

neutrino

Solar

 10

pp [± 0.6%]

 7 Be [$\pm 6\%$]

pep $[± 1%]$

elisa.percalli@mi.infn.it PIC 2024

B16 - SSM

⁸B [± 12%]

hep $[\pm 30\%]$

Solar neutrinos - 8B

Higher energy neutrinos interact through ES, CC, NC

- ES and CC are neutrino flavor sensitive, hence probe the **survival probability**

- NC occurs for all neutrino flavors, hence allows a **model independent measurement of the 8B flux**

JUNO has potential to both measure Φ (8B), Δ m²₂₁, and $\sin^2\theta_{12}$

[Feasibility and physics potential of detecting 8B](http://hepnp.ihep.ac.cn//article/id/a5a44c09-ec92-431a-93f5-86b9dc3ee0d8) [solar neutrinos at JUNO](http://hepnp.ihep.ac.cn//article/id/a5a44c09-ec92-431a-93f5-86b9dc3ee0d8)

[Model-independent Approach of the JUNO 8 B](https://iopscience.iop.org/article/10.3847/1538-4357/ad2bfd) [Solar Neutrino Program](https://iopscience.iop.org/article/10.3847/1538-4357/ad2bfd)

 Expected prompt visible energy spectra of the CC signal

Expected results in ten years of data-taking

Geoneutrinos

Source: Th and U decays in the Earth crust and mantle

Energy: 0-3 MeV

Motivation: Measuring **U and Th abundances** probes **Earth's properties** (e.g. mantle convection, plate tectonics, Earth's magnetic field production). Measuring **Th/U ratio** is useful for probing Earth's formation, mantle convection, plate tectonics, Earth's magnetic field production

JUNO expects **400 geo-nu** events per year - can overtake **global measurement statistics in 1 year**

$$
\begin{array}{rcl}\n^{238}_{92}\text{U} & \longrightarrow & ^{206}_{82}\text{Pb} + 8\alpha + 6e^- & + 6\bar{\nu}_e \\
^{232}_{90}\text{Th} & \longrightarrow & ^{208}_{82}\text{Pb} + 6\alpha + 4e^- & + 4\bar{\nu}_e \\
\text{Detectable in JUNO via IBD}\n\end{array} + 51.698 \text{ MeV}
$$

[^{\(}PDF\) Expected geoneutrino signal at JUNO](https://www.researchgate.net/publication/269417607_Expected_geoneutrino_signal_at_JUNO)

JUNO sensitivity to geoneutrinos

For geoneutrinos analysis the **main background** is the reactor antineutrinos flux

Good sensitivity to the **geoneutrino flux** is needed (different models for lithosphere and mantle)

Main **uncertainties** come from oscillations parameters

The main advantage of JUNO will be its large **exposure**

Borexino: 17% precision in 10 years Kamland: 15% precision in 18 years

JUNO expects a measurement of geoneutrino flux with ~22% precision in 1 year and ~8% precision in 10 years

Supernova neutrinos

[SNEWS 2.0: a next-generation supernova early](https://iopscience.iop.org/article/10.1088/1367-2630/abde33) [warning system for multi-messenger astronomy](https://iopscience.iop.org/article/10.1088/1367-2630/abde33)

Source: Supernovae are the final stages of very massive stars. They produces neutrinos in **two phases**:

- **Pre-SN neutrinos:** emitted in the days before the collapse. Can be used to **alert** for a SN.

- **SN neutrinos:** emitted during the explosion, in ~ 10 seconds.

> **Aim to contribute to Supernova Early Warning System [\[SNEWS](https://iopscience.iop.org/article/10.1088/1367-2630/abde33)]**

Some of JUNO channel of **detection** (both ν and $\overline{\nu}$)

- **IBD** (only $\bar{\nu}_e$) has a prompt-delayed signature
- $-eES$ (elastic scattering on electrons, all ν)
- pES (elastic scattering on protons, all ν) The energy distributions are highly dependent on the **mass ordering**

Supernova neutrinos

Alert efficiency: probability to identify Pre-SN/SN neutrinos burst **Sensitivity**: distance at which the alert efficiency is 50%

For an exploding star of $30{\rm M}_{\odot}$ **JUNO** is sensitive to:

- **Pre-SN up to 1.6 kpc** (0.9 kpc) in case of NO (IO)
- **SN up to 370 kpc** (360 kpc) in case of NO (IO)

Diffusive supernova neutrino background

Source: All the neutrinos from past SN explosions

Motivation: Useful probe for important **cosmological** parameters :

- Rate of SN $(\mathbf{R}_{\mathbf{S}\mathbf{N}})$
- Average CCSN v energy ($\langle E_{\nu} \rangle$)
- Fraction of failed BH formation (f_{BH})

Very low statistics expected before the cuts (∼0.14 events/y/kton)

Detection channel with fewer background is **IBD,** with energy over **12 MeV** (avoid reactor \vec{v})

Remaining background are induced by **atmospheric** (**NC and fast neutrons from muons)**

Energy spectrum in JUNO after 10 years before and after the cuts

JUNO sensitivity to DSNB

If there is **no positive DSNB detection**, JUNO can also significantly improve upon the **current best limits on the DSNB** fluxes.

[Prospects for detecting the diffuse supernova neutrino background with JUNO](https://iopscience.iop.org/article/10.1088/1475-7516/2022/10/033)

Conclusions

JUNO has great potential to study neutrinos from natural sources

Atmospheric neutrinos

Will enhance sensitivity to NMO through "matter effects"

Solar neutrinos

Potential for the most precise model-independent measurements of solar neutrino fluxes and oscillation parameters

Geo neutrinos

Can quickly collect world-leading statistics. Will allow to probe Earth's mantle properties.

Supernova neutrinos

Can detect both SN and Pre-Sn neutrinos, to boost source understanding and make fast alert for SN explosions.

DSNB

High sensitivity in just a few years.

Thanks for your attention

an 200
통
통

1000

 800

 600

 400

 200

 9_o

CC are the favourite detection channels (electron and muons are very distinguishable, due to different track lengths). The NC component appears to be overlapped mainly to νµ CC events, with a tail also in the νe CC region.

 $\overline{80}$

 100

60

The **High Backgroun**d scenario corresponds to the minimum radiopurity requirements needed for the neutrino mass ordering measurement

The **Medium Background** scenario corresponds to a factor 10 improvement with respect to the High background scenario for all isotopes.

The **Low Background** scenario corresponds to a factor 10 improvement with respect to the Medium background scenario for all isotopes, except for $210Pb$ and $85Kr$ for which the improvement is only of a factor 5.

The **Very Low Background** scenario corresponds to the radiopurity levels reached on ${}^{40}K$, ${}^{85}Kr$, ${}^{232}Th$ chain and 238U chain by the Borexino experiment in Phase-III in the Fiducial Volume

pep sensitivity

3FC

Due to their long lifetimes, the events from ¹¹C, ¹⁰C, and ⁶He backgrounds can not be removed by a short-time veto cut following a muon event.

The spallation reaction by the parent muon is followed by a cosmogenic decay and a neutron capture, followed by the emission of a characteristic 2.2MeV γ-ray, which allows us to use the so-called Three-Fold-Coincidence (TFC) algorithm.

⁸B sensitivity

1 TNU (Terrestrial Neutrino Unit): one interaction over a year-long fully efficient exposure of 10³² free protons.

In this work, we employ different numerical models for the fluxes of pre-SN neutrinos and SN neutrinos to study the influence of different models. The pre-SN models are from Patton et al. [17] for the 15 M_{\odot} and 30 M_{\odot} progenitor stars, where both thermal processes and nuclear weak interactions are taken into account in the pre-SN simulation. The SN neutrino models are provided by the Nakazato group $[21]$ and the Garching group $[22]$. The Nakazato models are simulated for progenitor masses of 13 M_{\odot} and 30 M_{\odot} with metallicities and shock revival times of $(0.004, 100\text{ms})$ and $(0.002, 300\text{ms})$ respectively. The Garching

31 SN candidates within 1 kpc: [Presupernova Neutrinos: Directional Sensitivity and Prospects for Progenitor](https://iopscience.iop.org/article/10.3847/1538-4357/ab99a6) [Identification - IOPscience](https://iopscience.iop.org/article/10.3847/1538-4357/ab99a6) 56 galaxies in 360 kpc: [UPDATED NEARBY GALAXY CATALOG - IOPscience](https://iopscience.iop.org/article/10.1088/0004-6256/145/4/101)

Upper limits for discovery

DSNB discovery potential σ at JUNO as a function of **DSNB model parameters** for **10** years of data taking

Backgrounds

- Reactor (we can't go to too high energy, due to atmospheric antinu arriving)
- Atmospheric antinu (compute the flux from theoretical models)
- Cosmogenic 9 Li/ 8 He (low energy)
- Fast neutron from atm. muons (cut on fiducial volume $\langle 16m \rangle$
- Atmospheric nu NC (interacts on ${}^{12}C$ ->n+ ${}^{11}C$ CC under 100 MeV suppressed neutron production

Cuts

- Muon veto
- PSD to veto atmo nu NC. Exclude final states with alpha.
- TFC cuts, some final states of nu NC are 11 C that has three fold signature (1 fast neutron recoil, 2 neutron capture, 3 beta decay of ${}^{11}C$)