

## Prospects for neutrinos from natural sources in JUNO

**Elisa Percalli** on behalf of the JUNO collaboration









# JUNO experiment

A multipurpose neutrino detector



## JUNO experiment



JUNO physics and detector - Progress in Particle and Nuclear Physics

## Now under construction in China, in a **700m deep underground** laboratory

- 20k tons of liquid scintillator
- 17612 20" PMTs and 25600 3" PMTs
- 17.7 m radius for acrylic sphere
- PMT optical coverage 78%
- High light yield scintillator  $(10^4 \text{ emitted photons/MeV})$
- Water cherenkov veto detector + top tracker
- Designed to reach an unprecedented energy resolution of 3% @MeV
- Good radiopurity expected

#### JUNO will start data taking in 2025

For further information see <u>Stefano Dusini</u>'s talk

#### elisa.percalli@mi.infn.it



## **Neutrino sources**



#### elisa.percalli@mi.infn.it

## **Neutrino sources**



Sub-percent precision measurement of neutrino oscillation parameters with JUNO

## Neutrino mass ordering determination

**Source:** Reactor neutrinos

Energy: 1.8-10 MeV

**Detection** method: IBD (inverse beta decay  $\bar{\nu}_e + p \rightarrow e^+ + n$ ) Optimized **distance** for NMO



See Dmitrii Dolzhikov's talk after this



#### elisa.percalli@mi.infn.it

## NMO with atmospheric neutrinos

Source: Decay of particles  $(\mu,\,\pi,\,K)$  in atmosphere, within  $10^4\text{--}10$  km from Earth surface

Energy: 10 MeV - 1 PeV

**Motivation:** We can probe the neutrino mass ordering through "**matter effects**"

 $P_{
m NH}(\,
u_{lpha} 
ightarrow 
u_{eta}) = P_{
m IH}(\,ar{
u}_{lpha} 
ightarrow ar{
u}_{eta})$ 



Atmospheric neutrino energy spectrum from previous experiments



 $\operatorname{PIC} 2024$ 

Normal Ordering

## NMO with atmospheric neutrinos

Source: Decay of particles  $(\mu,\,\pi,\,K)$  in atmosphere, within  $10^4\text{--}10$  km from Earth surface

Energy: 10 MeV - 1 PeV

**Motivation:** We can probe the neutrino mass ordering through "**matter effects**"

 $P_{
m NH}(\,
u_{lpha} 
ightarrow 
u_{eta}) = P_{
m IH}(\,ar{
u}_{lpha} 
ightarrow ar{
u}_{eta})$ 



Atmospheric neutrino energy spectrum from previous experiments



#### elisa.percalli@mi.infn.it

PIC 2024

**Inverted Ordering** 

Atmospheric neutrinos

[2103.09908] JUNO sensitivity to low energy atmospheric neutrino spectra

## **NMO** with atmospheric neutrinos

Sensitivity to NMO is enhanced for neutrinos of few GeV at  $\cos\theta < -0.8$ 

Expected 10/15 evt per day 3.0 Electron neutrinos Point-like Electron neutrinos Point-like Track-like Muon neutrinos Muon neutrinos Track-like Expected atmospheric (neutrino + 2.5 2.5 Electron+Muon Point+Track Electron+Muon Point+Track antineutrino) flux at the JUNO site Normal Hierarchy Inverted Hierarchy 2.0 2.0 Sensitivity (a) (d) E<sup>2</sup> Φ [GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>] 10 Sensitivity 1.5 1.5 1.0 1.0 0.5 0.5  $10^{-3}$ 0.0 0.0 2 10 12 16 18 20 10 12 16 18 20 14 14 HKKM14 v<sub>u</sub> Flux (w/o osc.) Livetime (year) Livetime (year) HKKM14 v, Flux (w/ osc.)  $10^{-4}$ Expected sensitivity around  $1\sigma$  in 6y HKKM14 v Flux (w/o osc.) HKKM14 v<sub>e</sub> Flux (w/ osc.) **Combined NMO sensitivity studies** with 10<sup>-5</sup> reactor and atmospheric neutrinos is ongoing -0.5 0.5 1.5 0 log<sub>10</sub> (E<sub>v</sub> / GeV)

elisa.percalli@mi.infn.it

## Solar neutrinos

Source: Nuclear fusion reactions inside the Sun

Energy: 0.1-18 MeV

**Motivation:** We can probe physical quantities of the Sun (e.g. metallicty) and neutrino oscillation parameters  $(\Delta m_{21}^2, \theta_{21})$ 







Comprehensive measurement of pp-chain solar neutrinos | Nature

The analysis strategy differs with the neutrino energies

#### elisa.percalli@mi.infn.it

#### Solar neutrinos - <sup>7</sup>Be, *pep*, CNO flux [cm<sup>-2</sup> s<sup>-1</sup>

Low energy neutrinos ( $\leq 2 \text{MeV}$ ) will be detected through elastic scattering on electrons

10<sup>2</sup> level  $10^{-1}$ 10 1 Neutrino energy [MeV] — Very Low -Low - Medium - High -BX stat. ---- BX stat.+syst. Exposure [kton y] Exposure [kton y] **Expected spectral shape for 6 years** 100 20 60 80 60 80 100 10<sup>2</sup> <sup>7</sup>Be-v rate relative uncertainty [%] <sup>7</sup>Be <sup>210</sup>Po With pep-v constraint <sup>210</sup>Bi CNO  $10^{7}$ ΄Be-ν <sup>85</sup>Kr pep-v <sup>238</sup>Ü chain <sup>13</sup>N-v 10<sup>6</sup> <sup>232</sup>Th chain <sup>5</sup>Ο-ν dataset 10<sup>5</sup> Events / p.e. 10<sup>4</sup> 10<sup>3</sup> 10 10<sup>2</sup> 0 2 10 Time [y] 10 10 0 2 6 JUNO expects to soon improve upon 0.7 0.8 0.9 1.1 1.2 1.3 0.5 0.6 1.4 1.5 Time [y] Energy [MeV] existing solar neutrino flux measurements JUNO sensitivity to 7Be, pep, and CNO solar neutrinos

10<sup>13</sup>

neutrino

Solar

10

10

pp [± 0.6%]

<sup>7</sup>Be [± 6%]

pep [± 1%]

Sensitivity will be highly dependent on the internal background

#### elisa.percalli@mi.infn.it

PIC 2024

B16 - SSM

<sup>8</sup>B [± 12%]

hep [± 30%]

## Solar neutrinos - <sup>8</sup>B

Higher energy neutrinos interact through ES, CC, NC

- ES and CC are neutrino flavor sensitive, hence probe the survival probability

- NC occurs for all neutrino flavors, hence allows a model independent measurement of the  $^8B$  flux

JUNO has potential to both measure  $\Phi(8B)$ ,  $\Delta m^2_{21}$ , and  $\sin^2 \theta_{12}$ 

Feasibility and physics potential of detecting 8B solar neutrinos at JUNO

Model-independent Approach of the JUNO 8 B Solar Neutrino Program Expected prompt visible energy spectra of the CC signal





#### Expected results in ten years of data-taking



#### elisa.percalli@mi.infn.it

## **Geoneutrinos** $(\bar{\nu}_e)$

Source: Th and U decays in the Earth crust and mantle

Energy: 0-3 MeV

**Motivation:** Measuring **U** and **Th** abundances probes Earth's properties (e.g. mantle convection, plate tectonics, Earth's magnetic field production). Measuring **Th/U** ratio is useful for probing Earth's formation, mantle convection, plate tectonics, Earth's magnetic field production

JUNO expects **400 geo-nu** events per year - can overtake **global** measurement statistics in 1 year

$$egin{array}{rcl} {}^{238}_{92}\mathrm{U}&\longrightarrow&{}^{206}_{82}\mathrm{Pb}+8lpha+6e^-+6ar{
u}_e\ +51.698\,\mathrm{MeV}\ {}^{232}_{90}\mathrm{Th}&\longrightarrow&{}^{208}_{82}\mathrm{Pb}+6lpha+4e^-+4ar{
u}_e\ +42.652\,\mathrm{MeV}\ {}^{208}_{12}\mathrm{Detectable\ in\ JUNO\ via\ IBD} \end{array}$$



(PDF) Expected geoneutrino signal at JUNO

#### elisa.percalli@mi.infn.it

## JUNO sensitivity to geoneutrinos

For geoneutrinos analysis the **main background** is the reactor antineutrinos flux

Good sensitivity to the **geoneutrino flux** is needed (different models for lithosphere and mantle)

Main **uncertainties** come from oscillations parameters

The main advantage of JUNO will be its large **exposure** 

Borexino: 17% precision in 10 years Kamland: 15% precision in 18 years

JUNO expects a measurement of geoneutrino flux with ~22% precision in 1 year and ~8% precision in 10 years



#### elisa.percalli@mi.infn.it



## Supernova neutrinos

SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy

Source: Supernovae are the final stages of very massive stars. They produces neutrinos in two phases:



- **Pre-SN neutrinos:** emitted in the days before the collapse. Can be used to **alert** for a SN.

- SN neutrinos: emitted during the explosion, in ~10 seconds.

Aim to contribute to Supernova Early Warning System [<u>SNEWS</u>]

**Some of JUNO** channel of **detection** (both v and v)

- **IBD** (only  $v_e$ ) has a prompt-delayed signature
- eES (elastic scattering on electrons, all  $\nu)$
- pES (elastic scattering on protons, all  $\nu$ ) The energy distributions are highly dependent on the **mass ordering**

elisa.percalli@mi.infn.it

## Supernova neutrinos

Alert efficiency: probability to identify Pre-SN/SN neutrinos burst Sensitivity: distance at which the alert efficiency is 50% For an exploding star of  $30 M_{\odot}$  JUNO is sensitive to:

- **Pre-SN up to 1.6 kpc** (0.9 kpc) in case of NO (IO)
- SN up to 370 kpc (360 kpc) in case of NO (IO)



## Diffusive supernova neutrino background

PIC 2024

Source: All the neutrinos from past SN explosions

Motivation: Useful probe for important cosmological parameters :

- Rate of SN  $(\mathbf{R_{SN}})$ 

elisa.percalli@mi.infn.it

- Average CCSN  $\nu$  energy (<  $E_{\nu}>$ )
- Fraction of failed BH formation  $(\mathbf{f}_{BH})$

Very low statistics expected before the cuts (~0.14 events/y/kton)

**Detection channel** with fewer background is **IBD**, with energy over **12** MeV (avoid reactor  $\overline{v}$ )

Remaining background are induced by atmospheric (vNC and fast neutrons from muons)



18

Energy spectrum in JUNO after 10 years before and after the cuts

## JUNO sensitivity to DSNB





If there is **no positive DSNB detection**, JUNO can also significantly improve upon the **current best limits on the DSNB** fluxes.



Prospects for detecting the diffuse supernova neutrino background with JUNO

#### elisa.percalli@mi.infn.it

## Conclusions



JUNO has great potential to study neutrinos from natural sources

#### Atmospheric neutrinos

Will enhance sensitivity to NMO through "matter effects"

#### Solar neutrinos

Potential for the most precise model-independent measurements of solar neutrino fluxes and oscillation parameters

#### Geo neutrinos

Can quickly collect world-leading statistics. Will allow to probe Earth's mantle properties.

#### Supernova neutrinos

Can detect both SN and Pre-Sn neutrinos, to boost source understanding and make fast alert for SN explosions.

#### DSNB

High sensitivity in just a few years.



# Thanks for your attention

entries -

1000

800

600

400

200

**4**0

CC are the favourite detection channels (electron and muons are very distinguishable, due to different track lengths). The NC component appears to be overlapped mainly to vµ CC events, with a tail also in the ve CC region.



60

80

100

120

| olar ne | olar neutrinos                                 |                            | $^{85}$ Kr                   | <sup>232</sup> Th chain | <sup>238</sup> U chain | <sup>210</sup> Pb chain |  |  |  |
|---------|------------------------------------------------|----------------------------|------------------------------|-------------------------|------------------------|-------------------------|--|--|--|
|         |                                                | High Background scenario   |                              |                         |                        |                         |  |  |  |
|         | $c \left[ rac{\mathrm{g}}{\mathrm{g}}  ight]$ | $1 \times 10^{-16}$        | $4 	imes 10^{-24}$           | $1 \times 10^{-15}$     | $1 \times 10^{-15}$    | $5 	imes 10^{-23}$      |  |  |  |
|         | $R \; [rac{\mathrm{cpd}}{\mathrm{kton}}]$     | 2289                       | 5000                         | 3508                    | 15047                  | 36817                   |  |  |  |
|         | $R^{ m ROI} \; [rac{ m cpd}{ m kton}]$        | 1562                       | 705                          | 2100                    | 7368                   | 17269                   |  |  |  |
|         |                                                | Medium Background scenario |                              |                         |                        |                         |  |  |  |
|         | $c \left[ rac{\mathrm{g}}{\mathrm{g}}  ight]$ | $1 \times 10^{-17}$        | $4 \times 10^{-25}$          | $1 \times 10^{-16}$     | $1 \times 10^{-16}$    | $5 	imes 10^{-24}$      |  |  |  |
|         | $R \; [rac{\mathrm{cpd}}{\mathrm{kton}}]$     | 229                        | 500                          | 351                     | 1505                   | 3682                    |  |  |  |
|         | $R^{ m ROI}$ $[rac{ m cpd}{ m kton}]$         | 156                        | 70                           | 210                     | 737                    | 1727                    |  |  |  |
|         |                                                |                            |                              |                         |                        |                         |  |  |  |
|         | $c \left[ rac{\mathrm{g}}{\mathrm{g}}  ight]$ | $1 \times 10^{-18}$        | $8 \times 10^{-26}$          | $1 \times 10^{-17}$     | $1 \times 10^{-17}$    | $1 \times 10^{-24}$     |  |  |  |
|         | $R \; [rac{\mathrm{cpd}}{\mathrm{kton}}]$     | 23                         | 100                          | 35                      | 150                    | 736                     |  |  |  |
|         | $R^{ m ROI}$ $[rac{ m cpd}{ m kton}]$         | 16                         | 14                           | 21                      | 74                     | 345                     |  |  |  |
|         |                                                |                            | Very Low Background scenario |                         |                        |                         |  |  |  |
|         | $c \left[ rac{\mathrm{g}}{\mathrm{g}}  ight]$ | $2 \times 10^{-19}$        | $8 \times 10^{-26}$          | $5.7 \times 10^{-19}$   | $9.4 \times 10^{-20}$  | $5 \times 10^{-25}$     |  |  |  |
|         | $R \; [rac{\mathrm{cpd}}{\mathrm{kton}}]$     | 4.2                        | 100                          | 2                       | 1.4                    | 347                     |  |  |  |
|         | $R^{ m ROI}$ $[rac{ m cpd}{ m kton}]$         | 2.9                        | 14                           | 1                       | 1                      | 163                     |  |  |  |

The **High Backgroun**d scenario corresponds to the minimum radiopurity requirements needed for the neutrino mass ordering measurement

The **Medium Background** scenario corresponds to a factor 10 improvement with respect to the High background scenario for all isotopes.

The **Low Background** scenario corresponds to a factor 10 improvement with respect to the Medium background scenario for all isotopes, except for <sup>210</sup>Pb and <sup>85</sup>Kr for which the improvement is only of a factor 5.

The **Very Low Background** scenario corresponds to the radiopurity levels reached on <sup>40</sup>K, <sup>85</sup>Kr, <sup>232</sup>Th chain and <sup>238</sup>U chain by the Borexino experiment in Phase-III in the Fiducial Volume

#### elisa.percalli@mi.infn.it



*pep* sensitivity



### **3FC**

Due to their long lifetimes, the events from <sup>11</sup>C, <sup>10</sup>C, and <sup>6</sup>He backgrounds can not be removed by a short-time veto cut following a muon event.

The spallation reaction by the parent muon is followed by a cosmogenic decay and a neutron capture, followed by the emission of a characteristic 2.2MeV  $\gamma$ -ray, which allows us to use the so-called Three-Fold-Coincidence (TFC) algorithm.

## <sup>8</sup>B sensitivity





| Lithosphere model                                            | Signal [TNU]         |
|--------------------------------------------------------------|----------------------|
| Global model<br>Prog. in Earth and Planet. Sci. 2, 5 (2015)  | $30.9^{+6.5}_{-5.2}$ |
| JULOC model<br>Phys.Earth Planet.Interiors 299 (2020) 106409 | $40.4^{+5.6}_{-5.0}$ |

| Mantle model       | Signal [TNU] |  |  |
|--------------------|--------------|--|--|
| Cosmochemical (CC) | ~ 2          |  |  |
| Geochemical (GC)   | ~ 10         |  |  |
| Geodynamical (GD)  | ~ 20         |  |  |

1 TNU (Terrestrial Neutrino Unit): one interaction over a year-long fully efficient exposure of  $10^{32}$  free protons.

In this work, we employ different numerical models for the fluxes of pre-SN neutrinos and SN neutrinos to study the influence of different models. The pre-SN models are from Patton et al. [17] for the 15  $M_{\odot}$  and 30  $M_{\odot}$  progenitor stars, where both thermal processes and nuclear weak interactions are taken into account in the pre-SN simulation. The SN neutrino models are provided by the Nakazato group [21] and the Garching group [22]. The Nakazato models are simulated for progenitor masses of 13  $M_{\odot}$  and 30  $M_{\odot}$  with metallicities and shock revival times of (0.004, 100ms) and (0.002, 300ms) respectively. The Garching

31 SN candidates within 1 kpc: <u>Presupernova Neutrinos: Directional Sensitivity and Prospects for Progenitor</u>
<u>Identification - IOPscience</u>
56 galaxies in 360 kpc: <u>UPDATED NEARBY GALAXY CATALOG - IOPscience</u>

| <b>Supernova</b> | neutrinos 🗕 |                   | -        |              |                    | <u>.</u> | 205                  |              |                      |            |
|------------------|-------------|-------------------|----------|--------------|--------------------|----------|----------------------|--------------|----------------------|------------|
| •                | Model       |                   | Mass     | $r_{bkg}$    | Nunn               | N .      | Alert distance [kpc] |              | Alert time           |            |
|                  | Widder      | $[M_{\odot}]$     | ordering | $[day^{-1}]$ | IVIBD              | Ivsel    | FAR<1/month          | FAR < 1/year | FAR < 1/month        | FAR<1/year |
|                  |             | 11<br>5<br>27     | NO       |              | 1675               | 1414     | 230                  | 230          | (16 ms)              | (17 ms)    |
|                  |             |                   |          |              |                    | (1204)   | (220)                | (190)        |                      |            |
|                  |             |                   | ΙΟ       |              | 1676               | 1413     | 230                  | 230          | (13 ms)              | (14 ms)    |
|                  | Combing     |                   |          |              |                    | (1228)   | (220)                | (200)        |                      |            |
|                  | Garching    |                   | NO       |              | 3132               | 2651     | 320                  | 320          | (15 ms)              | (16 ms)    |
|                  |             |                   |          |              |                    | (2466)   | (310)                | (280)        |                      |            |
|                  |             |                   | Ю        |              | 39<br>(83)<br>2326 | 2502     | 310                  | 310          | (13 ms)              | (13 ms)    |
| SN               |             |                   |          | 39           |                    | (2366)   | (300)                | (270)        |                      |            |
| 51               |             | 13<br>Izato<br>30 | NO       | (83)         |                    | 1934     | 270                  | 240          | $(20 \mathrm{\ ms})$ | (21 ms)    |
|                  |             |                   |          |              |                    | (1698)   | (240)                | (200)        |                      |            |
|                  |             |                   | Ю        | -            | 2827               | 2365     | 300                  | 270          | (16 ms)              | (17 ms)    |
|                  | Nakazato    |                   |          |              |                    | (2190)   | (280)                | (240)        |                      |            |
|                  | IVakazato   |                   | NO       |              | 5074               | 4098     | 400                  | 370          | (31 ms)              | (31 ms)    |
|                  |             |                   |          |              |                    | (4217)   | (390)                | (350)        |                      |            |
|                  |             |                   | ΙΟ       |              | 4972               | 4131     | 390                  | 350          | (31 ms)              | (31 ms)    |
|                  |             |                   |          |              |                    | (4145)   | (370)                | (330)        |                      |            |
|                  |             | 15                | NO       | 21           | 659                | 556      | 1.3                  | 1.1          | -140 h               | -120 h     |
| <b>DPO</b>       | N Patton    |                   | IO       |              | 196                | 156      | 0.7                  | 0.6          | -90 h                | -30 h      |
| pre-c            |             | 30                | NO       |              | 1176               | 930      | 1.7                  | 1.6          | -220 h               | -180 h     |
|                  |             |                   | IO       |              | 379                | 302      | 1.0                  | 0.9          | -100 h               | -3 h       |

#### elisa.percalli@mi.infn.it

## **Upper limits for discovery**



DSNB discovery potential ( $\sigma$ ) at JUNO as a function of  $DSNB\ model\ parameters$  for  $10\ years$  of data taking

## Backgrounds

- Reactor (we can't go to too high energy, due to atmospheric antinu arriving)
- Atmospheric antinu (compute the flux from theoretical models)
- Cosmogenic <sup>9</sup>Li/<sup>8</sup>He (low energy)
- Fast neutron from atm. muons (cut on fiducial volume < 16m)
- Atmospheric nu NC (interacts on <sup>12</sup>C ->n+<sup>11</sup>C CC under 100 MeV suppressed neutron production



#### Cuts

- Muon veto
- PSD to veto atmo nu NC. Exclude final states with alpha.
- TFC cuts, some final states of nu NC are <sup>11</sup>C that has three fold signature (1 fast neutron recoil, 2 neutron capture, 3 beta decay of <sup>11</sup>C)