JUNO's Physics with Reactor Antineutrinos

Dmitrii Dolzhikov

on behalf of the JUNO collaboration

43rd International Symposium on Physics in Collision PIC2024 October 24, 2024

JUNO and ν oscillations

JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment under construction in South of China

- ✤ 20 kton of Liquid Scintillator (LS) inside a 35 m diameter acrylic sphere surrounded by a 35 kton water Cherenkov detector
- ♦ 52.5 km from 8 nuclear reactors (26.6 GW_{th})
- Energy resolution $\sigma < 3\%$ at 1 MeV **
- Energy scale uncertainty < 1%

JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment under construction in South of China

- 20 kton of Liquid Scintillator (LS) inside a 35 m diameter acrylic sphere surrounded by a 35 kton water Cherenkov detector
- ✤ 52.5 km from 8 nuclear reactors (26.6 GW_{th})
- ♦ Energy resolution $\sigma < 3\%$ at 1 MeV
- Energy scale uncertainty < 1%

Main physics goals with reactor antineutrinos:

- Determine Neutrino Mass Ordering (NMO)
- ★ Measure oscillation parameters $\sin^2 \theta_{12}$, Δm^2_{21} , and Δm^2_{31} with sub-percent precision

PPNP 123 (2022): 103927 Top tracker Water pool Liquid scintillator

Neutrino mixing

Weak (e, μ , τ) and mass (1,2,3) eigenstates differ:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Neutrino mixing

Weak (e, μ , τ) and mass (1,2,3) eigenstates differ:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Mixing is parametrized by:

- ↔ Three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$
- ↔ CP-violating phase: $\delta_{\rm CP}$

ν_3		
ν_2		
ν_1		
$ u_e \square$	$ u_{\mu}$	$ u_{ au}$

Neutrino mixing

Weak (e, μ , τ) and mass (1,2,3) eigenstates differ:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Mixing is parametrized by:

- ✤ Three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$
- * CP-violating phase: $\delta_{\rm CP}$

Three neutrino mass splittings $(\Delta m_{ij}^2 = m_i^2 - m_j^2)$:

- Involved in oscillation probability calculations
- Only two independent: Δm_{21}^2 , $|\Delta m_{31}^2|$ (or equivalently $|\Delta m_{32}^2|$)

ν_3		
ν_2		
ν_1		
$ u_e \square$	$ u_{\mu}$	ν_{τ}

What we know (PDG 2024):

- $\checkmark \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- ✓ $|\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$ (±1.1%)
- ✓ $\sin^2 \theta_{12} \sim 0.3 \ (\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

What we know (PDG 2024):

- $\checkmark \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- $\checkmark |\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 \ (\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

Open questions:

⑦ Mass ordering: $\Delta m^2_{31} > 0$ or $\Delta m^2_{31} < 0$

What we know (PDG 2024):

- $\checkmark \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- $\checkmark |\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 \ (\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

Open questions:

-
⑦ Mass ordering: $\Delta m^2_{31} > 0$ or $\Delta m^2_{31} < 0$
- ⑦ θ_{23} octant: $\theta_{23} > 45^\circ$ or $\theta_{23} < 45^\circ$
- ? CP phase: δ_{CP} value? CP parity violated or not?

What we know (PDG 2024):

- $\checkmark \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- $\checkmark |\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 \ (\pm 4.2\%)$
- $\checkmark \sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- $\checkmark \sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

Open questions:

-
⑦ Mass ordering: $\Delta m^2_{31} > 0$ or $\Delta m^2_{31} < 0$
- Image: θ_{23} octant: $\theta_{23} > 45^\circ$ or $\theta_{23} < 45^\circ$
- **③** CP phase: δ_{CP} value? CP parity violated or not?

JUNO will both contribute to precise measurements of oscillation parameters and answer the NMO question

✤ JUNO will observe deficit of \bar{v}_e due to oscillation

• \bar{v}_e survival probability:

$$\mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} \\ - \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31} \\ - \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$$

✤ JUNO will observe deficit of \bar{v}_e due to oscillation

• \bar{v}_e survival probability:

$$\mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} \quad \text{SLOW}$$
$$- \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31}$$
$$- \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$$

✤ JUNO will observe deficit of \bar{v}_e due to oscillation

• \bar{v}_e survival probability:

$$\mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} \\ - \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31} \\ - \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$$

FAST

↔ JUNO will observe deficit of $\bar{\nu}_e$ due to oscillation

• \bar{v}_e survival probability:

$$\begin{aligned} \mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) &= 1 - \sin^2 2\theta_{12} \, c_{13}^4 \, \sin^2 \Delta_{21} & \text{SLOW} \\ &- \sin^2 2\theta_{13} \, c_{12}^2 \sin^2 \Delta_{31} \\ &- \sin^2 2\theta_{13} \, s_{12}^2 \sin^2 \Delta_{32} & \text{FAST} \end{aligned}$$

✤ JUNO will observe deficit of \bar{v}_e due to oscillation

♦ \bar{v}_e survival probability:

$$\begin{aligned} \mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) &= 1 - \sin^2 2\theta_{12} \, c_{13}^4 \, \sin^2 \Delta_{21} & \text{SLOW} \\ &- \left(\sin^2 2\theta_{13} \, c_{12}^2 \sin^2 \Delta_{31} \right) \\ &- \sin^2 2\theta_{13} \, s_{12}^2 \sin^2 \Delta_{32} & \text{FAST} \end{aligned}$$

- ★ JUNO sensitive to the Δ m_{31}^2 , Δ m_{21}^2 , sin² $θ_{12}$, and sin² $θ_{13}$
- ✤ Probability does not depend on δ_{CP} and θ_{23} → no degeneracies

$\bar{\nu}_e$ oscillations in JUNO

- JUNO studies fine interference pattern caused by quasi-vacuum oscillations in the oscillated antineutrino spectrum
- ✤ Interference pattern depends on NMO
- ☆ To resolve peaks → need good energy resolution
- ★ To define peak positions → need well defined energy scale
- Complementary to other neutrino oscillation experiments (accelerator and atmospheric)

Antineutrino detection in JUNO

• Inverse Beta Decay (IBD) reaction is used for \bar{v}_e detection:

$$\bar{\nu}_e + p \to e^+ + n$$

* \bar{v}_e transfers most of its energy to the positron

Antineutrino detection in JUNO

• Inverse Beta Decay (IBD) reaction is used for \bar{v}_e detection:

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- \bar{v}_e transfers most of its energy to the positron
- Prompt signal: energy deposited by positron in the LS (kinetic + annihilation),
- Delayed signal: photon emission from neutron capture on hydrogen (~99%) or carbon (~1%)

Antineutrino detection in JUNO

• Inverse Beta Decay (IBD) reaction is used for \bar{v}_e detection:

$$\bar{\nu}_e + p \to e^+ + n$$

- \bar{v}_e transfers most of its energy to the positron
- Prompt signal: energy deposited by positron in the LS (kinetic + annihilation),
- Delayed signal: photon emission from neutron capture on hydrogen (~99%) or carbon (~1%)

Energy signature, temporal and spatial correlation of prompt-delayed pairs allows effective separation of the signal from the background

JUNO's detector response

Approximate energy conversion model

 $\begin{array}{cccc} E_{\nu} \ \rightarrow \ E_{\rm dep} \ \rightarrow \ E_{\rm vis} \ \rightarrow \ E_{\rm rec} \\ \mbox{Antineutrino} & \mbox{Deposited} & \mbox{Visible} & \mbox{Reconstructed} \\ & \mbox{energy} & \mbox{energy} & \mbox{energy} & \mbox{energy} \end{array}$

1. IBD reaction kinematics and annihilation $\rightarrow e^+$ deposited energy

 $E_{\rm dep} \simeq E_{\overline{\nu}_e} - 0.782 \,\,{\rm MeV}$

2. Quenching → Liquid Scintillator Non-Linearity (NL):

$$E_{\rm vis} = f_{\rm LSNL}(E_{\rm dep}) \cdot E_{\rm dep}$$

3. Smearing due to Energy Resolution (Res):

$$\frac{\sigma_{E^{\text{rec}}}}{E^{\text{vis}}} = \sqrt{\frac{a}{\sqrt{E^{\text{vis}}}} + b^2 + \left(\frac{c}{E^{\text{vis}}}\right)}$$

Chinese Phys. C 46 123001

JUNO's expected signal and backgrounds

- ✤ IBD selection efficiency: 82.2%
 - Cuts: fiducial volume, energy, time, and relative distance
 - Cosmogenic background rejection: muon veto

- Expected IBD rate: 47.1/day
- Expected Background rate: 4.11/day

10

High signal to background ratio

JUNO-TAO reference spectrum

Taishan Antineutrino Observatory (TAO) satellite detector:

- ✤ 44 m from one of the Taishan NPP cores (4.6 GW_{th})
- ✤ 2.8 ton of Gd-doped Liquid Scintillator
- ✤ SiPM and GD-LS at -50°C
- ♦ Energy resolution $\sigma < 2\%$ at 1 MeV

JUNO-TAO reference spectrum

Taishan Antineutrino Observatory (TAO) satellite detector:

- ♦ 44 m from one of the Taishan NPP cores (4.6 GW_{th})
- ✤ 2.8 ton of Gd-doped Liquid Scintillator
- ✤ SiPM and GD-LS at -50°C
- Energy resolution $\sigma < 2\%$ at 1 MeV **

Main goals: provide reference antineutrino spectrum for JUNO

Why: to eliminate antineutrino model dependence in the determination of NMO

How: by simultaneously analyzing JUNO and TAO spectra

arXiv 2405.18008

Sensitivity Studies

Oscillation Parameters and Neutrino Mass Ordering

Sensitivity to oscillation parameters

- ✤ JUNO will achieve sub-percent precision on Δm_{31}^2 , Δm_{21}^2 , and $\sin^2 \theta_{12}$ during first 2 years of data taking
- Sub-percent measurements can:
 - be used as inputs to other experiments
 - provide constraints for model building
 - enable more precise searches of physics beyond Standard Model

	Central value	PDG2020	100 days	6 years
$\Delta m_{31}^2 (\times 10^{-3} \text{ eV}^2)$	2.5253	±0.034 (1.3%)	±0.021 (0.8%)	±0.0047 (0.2%)
$\Delta m_{21}^2 (\times 10^{-5} \text{ eV}^2)$	7.53	±0.18 (2.4%)	±0.074 (1.0%)	±0.024 (0.3%)
$\sin^2 \theta_{12}$	0.307	±0.013 (4.2%)	±0.0058 (1.9%)	±0.0016 (0.5%)
$\sin^2 \theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)
rii Dolzhikov		JUNO's Physics with Reactor Ar	itineutrinos	October 24, 2024

Systematic uncertainties

Dominant systematic uncertainties sources:

- Δm²₃₁: antineutrino spectrum shape uncertainty, detector non-linearity, backgrounds
- * Δm_{21}^2 : backgrounds, spent nuclear fuel, non-equilibrium (particularly in the low energy region)
- * $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$: reactor flux normalization, detector efficiency

Δm_{31}^2	lσ (%)		Δm_{21}^2	lσ (%)	
Statistics	0.17		Statistics	0.16	
Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01	
- Correlated	0.01		- Correlated	0.03	
- Reference spectrum	0.05		- Reference spectrum	0.07	
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14	
Detection:			Detection:		
- Efficiency	0.01		- Efficiency	0.02	
- Energy resolution	< 0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05	
- Backgrounds	0.04		- Backgrounds	0.18	
Matter density	0.01		Matter density	0.01	
All systematics	0.08		All systematics	0.27	
Total	0.19		Total	0.32	
$\sin^2 \theta_{12}$	1σ (%)	%	$\sin^2 \theta_{13}$	1σ (%)	%
Statistics	0.34		Statistics	8.94	
Reactor:			Reactor:		
- Uncorrelated	0.10		- Uncorrelated	2.53	
- Uncorrelated - Correlated	0.10			2.53 6.83	
			- Uncorrelated		
- Correlated	0.27		- Uncorrelated - Correlated	6.83	
- Correlated - Reference spectrum	0.27		- Uncorrelated - Correlated - Reference spectrum	6.83 3.48	
- Correlated - Reference spectrum - Spent Nuclear Fuel	0.27		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	6.83 3.48 1.55	
 Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium 	0.27		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	6.83 3.48 1.55	
- Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	0.27 0.09 0.05 0.10		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	6.83 3.48 1.55 2.65	
 Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency 	0.27 0.09 0.05 0.10 0.23		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	6.83 3.48 1.55 2.65 5.81	
 Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution 	0.27 0.09 0.05 0.10 0.23 0.23		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	6.83 3.48 1.55 2.65 5.81 0.39	
 Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity 	0.27 0.09 0.05 0.10 0.23 0.23 0.01 0.09		- Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	6.83 3.48 1.55 2.65 5.81 0.39 2.09	
 Correlated Reference spectrum Spent Nuclear Fuel Non-equilibrium Detection: Efficiency Energy resolution Nonlinearity Backgrounds 	0.27 0.09 0.10 0.23 0.01 0.23 0.23 0.23		- Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89	

Sensitivity to Neutrino Mass Ordering

Median sensitivity to NMO is based on Asimov dataset:

 $\Delta \chi^2_{\rm min} = \min \chi^2_{\rm IO} - \min \chi^2_{\rm NO}$

- 3σ median sensitivity to NMO after
 7.1 years of data taking
 - > using only reactor \bar{v}_e
 - ➤ assuming 11/12 duty cycle
 - > 6.5 years \times 26.6 GW_{th} exposure
- Dominant sources of uncertainty: backgrounds, reference spectrum, nonlinearity

Conclusion

- JUNO will both contribute to precise measurements of oscillation parameters and answer the NMO question
- Using only reactor \bar{v}_e oscillations, JUNO:
 - > Will achieve **sub-percent precision on** Δm_{31}^2 , Δm_{21}^2 , and $\sin^2 \theta_{12}$ during first two years of data taking
 - Will determine the Neutrino Mass Ordering with a median sensitivity of 3σ after about 7 years of data taking
- ✤ JUNO is expected to start filling in 2024

Backup Slides