DUNE: science & status

Francisco Martínez López, on behalf of the DUNE collaboration

PIC 2024 43rd International Symposium on Physics in Collision Athens, 24 October 2024

Long baseline neutrino oscillations

Reactor/accelerator sector

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} \\ -s_{12} \\ 0 \end{pmatrix}$$

Atmospheric sector

- Next-generation long-baseline oscillation experiments:
 - Determine the neutrino mass ordering.
 - Determine the **octant** of θ_{23} (greater/less than 45°).
 - Determine if **CP** is violated in the leptonic sector and measure δ_{CP} .
- Is the 3 flavour model correct?
 - Precision measurements of neutrino/antineutrino oscillations as a function of L/E.

Majorana phases

$$\begin{array}{cccc} s_{12} & 0 \\ c_{12} & 0 \\ 0 & 1 \end{array} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solar sector

Queen Mary

The Deep Underground Neutrino Experiment

Sanford Underground **Research Facility**

- New broad-band (anti)neutrino beam at Fermilab with \geq 2 MW intensity.
- Far Detector (FD) @ SURF.
 - Underground modular LArTPC with \geq 40 kton fiducial mass.
- **Near Detector** (ND) @ FNAL.
 - Multiple technologies to control systematic uncertainties.

LBL neutrino oscillations

- Very high flux of neutrinos between oscillation minimum (1.27 GeV) and maximum (2.54 GeV), with coverage of the second maximum (0.80 GeV).
- MO, δ_{CP} and θ_{23} affect shape of the spectra in different ways, useful to resolve degeneracies.

Long-baseline neutrino oscillation physics potential of the DUNE experiment Eur.Phys.J.C 80 (2020) 10, 978

DUNE sensitivity

24/10/2024 5

Francisco Martínez López I DUNE: science & status I PIC 2024

Long-baseline neutrino oscillation physics potential of the DUNE experiment Eur.Phys.J.C 80 (2020) 10, 978

For **best-case** oscillation scenarios, DUNE has:

- $> 5\sigma$ mass ordering sensitivity after 1 year.
- $> 3\sigma$ CPV sensitivity in 3.5 years.
- For worst-case oscillation scenarios, DUNE has $> 5\sigma$ mass ordering sensitivity in 3 years.
- In the **long term**, DUNE can establish CPV over 75% of δ_{CP} values at $> 3\sigma$.

Precision measurements

Francisco Martínez López I DUNE: science & status I PIC 2024 24/10/2024 6

Beyond the Standard Model

- mixing, CPT violation, NSI, ...).
- capabilities.
- interactions (neutrino tridents).

Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment Eur.Phys.J.C 81 (2021) 4, 322

• DUNE covers a broad L/E range both at the ND and FD new physics in neutrino oscillations (sterile

• FD sensitive to other rare processes (iBDM, nucleon decay, ...) thanks to its low energy and directionality

• ND is sensitive to exotic physics from the beam (light DM, HNL, ...) and BSM contributions to neutrino

Astrophysical neutrinos

- DUNE has a unique sensitivity to MeV electron neutrinos.
- Neutrinos from core-collapse supernovae.
 - Able to extract mass ordering from neutronisation burst measurement.
 - Estimated 5° pointing resolution.
- Excellent sensitivity to ${}^{8}B$ solar neutrinos above 10 MeV, and discovery sensitivity to the hep solar flux.
 - DUNE can improve upon existing solar oscillation measurements via day-night asymmetry induced by matter effects.

Queen Mary DUNE

Far Detector technology top and endwall Top CRPs

JINST 15 T08010 (2020) Horizontal drift (HD)

Field cage

DUNE FD TDR Vol IV

- Two (four) LArTPCs, each with 17 kton of LAr (10 kton fiducial).
- Horizontal drift uses wire readout planes, distributed in four 3.6 m drift regions.
- Vertical drift with two 6.25 m drift regions and a central cathode.

Cathode

Phase I

Vertical drift (VD)

Queen Mary

Near Detector complex

- Main role is to measure beam rate and spectrum to predict unoscillated event rates at the FD.
- Constrain systematic uncertainties (flux, cross section, detector response) for oscillation measurement.
- Independent physics programme, including cross sections and BSM.

- neutrino measurements.

Francisco Martínez López I DUNE: science & status I PIC 2024 24/10/2024 10

 ν beam

Queen Mary DUNE

 Same main target and technology (LArTPC), cancels systematics and allows for model-tuning.

 Moveable detector system (PRISM) help constrain energy dependence of cross sections.

On-axis magnetised detector (SAND) for beam monitoring and

Phases of DUNE

- **DUNE Phase I** (2029 start of physics, 2031 beam + ND):
 - Two 17 kton LArTPC modules.
 - Upgradeable 1.2 MW neutrino beam.
 - Moveable LArTPC with muon spectrometer in ND.
 - On-axis near detector.
- **DUNE Phase II**:
 - Two additional FD modules (\geq 40 kton total).
 - Beam upgrade to >2 MW (ACE-MIRT).
 - More capable near detector (ND-GAr).

FD Phase II options

- VD is the baseline design for the Phase II FD modules.
- **Phased construction** allows the technological developments to expand the physics of DUNE (solar and supernova neutrinos, $0\nu\beta\beta$, DM, ...).
- Pursuing improvements to light collection for FD3, including Aluminium Profiles with Embedded X-ARAPUCA (APEX).
- For FD4 (the "Module of Opportunity") more ambitious designs are being considered:
 - Pixel readout, integrated charge-light readout, low backgrounds, Xe doping, non-LAr options, etc.

APEX for FD3

SoLAR arXiv:2203.07501

- ND-GAr provides low tracking thresholds and a uniform event acceptance.
- Detector design currently being optimised, active R&D programme.

Leading option for Phase II ND is ND-GAr.

 ND-GAr is a magnetised high-pressure gaseous argon TPC, surrounded by an ECal and a muon tagger.

• The B field and the ECal allow for **particle identification** and momentum and sign reconstruction.

DUNE ND CDR Instruments 5 (2021) 4, 31

Queen Mary DUNE

ProtoDUNEs @ **CERN**

- ProtoDUNE Phase I (2018-2020):
 - Successful demonstration of the DUNE LArTPC HD technology (ProtoDUNE-SP).
 - Several analyses ongoing (hadron-Ar cross sections, calibrations, ...).
- ProtoDUNE Phase II (2020-):
 - Construction of HD and VD modules completed (2020-2023).
 - ProtoDUNE-HD successfully completed beam operations last month.
 - LAr being transfer to ProtoDUNE-VD imminently, start data taking in early 2025.

Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Eur.Phys.J.C 82 (2022) 10, 903

2x2 demonstrator @ FNAL

- Very high rate at ND (~51 neutrinos/spill) motives pixel readout and optical modularity.
- Four LArTPC modules with pixelated readout, installed in the MINOS-ND cavern.
 - Includes upstream and downstream tracking planes, repurposed from MINERvA.
- Cooldown and filling finished May 31, operating in NuMI beam since July 8.
- Goal: demonstrate reconstruction with a natively 3D readout in a neutrino beam, with similar event rates to DUNE.
- First (anti)neutrino data of DUNE!

See recent NuFact talks on the topic:

- The Near Detector Liquid Argon (ND-LAr) 2x2 prototype of DUNE
- The DUNE 2x2 Demonstrator physics prospects and plans with neutrino data

Queen Mary DUNE

Summary

- DUNE is a long-baseline neutrino oscillation experiment and neutrino observatory.
- DUNE has potential to deliver ground-breaking results, like the unambiguous determination of the **neutrino mass hierarchy** and the discovery of **leptonic CP violation**.
- DUNE also has a rich programme on astrophysical neutrinos, and BSM both at the ND and FD.
- Active large-scale prototyping efforts at CERN and Fermilab.
 - R&D programme for DUNE Phase II detectors.
- **DUNE science begins this decade!**

Francisco Martínez López I DUNE: science & status I PIC 2024 24/10/2024 16

