Hypercontractivity and factorial moment scaling in the symmetry broken phase

A. Brofas, M. Zampetakis and F. K. Diakonos

FACULTY OF PHYSICS, UNIVERSITY OF ATHENS, GREECE

43rd International Symposium on Physics in Collision Demokritos, Athens, October 22-25

2 Measuring fractal dimensions in relativistic ion collisions

Intermittency analysis in RHIC

Theoretical interpretation of STAR intermittency results

Phase diagram of QCD

A sketch for systems with finite size

Main goal: Detection/existence of the QCD Critical Point (CP)

from R. V. Gavai, Contemporary Physics 57, 350 (2016)

Scaling laws	\Leftrightarrow	Fractal geometry
Order parameter fluctuations (baryon-number density $n_b(\mathbf{r})$)		Random fractal clusters formed by baryon excess
Density-density correlation $C(\mathbf{r}, \mathbf{r_0}) = \langle n_b(\mathbf{r}) n_b(\mathbf{r_0}) \rangle$	local	Correlation dimension $C(\mathbf{r}, \mathbf{r_0}) \propto \mathbf{r} - \mathbf{r_0} ^{-(d-d_F)}$
Finite-size scaling (FSS) $\langle N_b angle = \langle \int_V n_b({f r}) angle$	global	Mass fractal dimension $\langle N_b angle \propto V^{D_F/d}$
`		
critical exponents	\Leftrightarrow	fractal dimension(s) (homogeneity: $D_F = d_F$)
		(日) (월) (로) (로) (로) (() () () () () () () () () () () () () (

In the critical region (large correlation length) the local scaling:

$$\langle n_b(\mathbf{r}) n_b(\mathbf{r_0}) \rangle \propto |\mathbf{r} - \mathbf{r_0}|^{-(d-d_F)}$$

holds also for large $|\mathbf{r} - \mathbf{r_0}|$
 \Downarrow

Scaling is transferred to **momentum space** for **small momentum differences** (Fourier transform):

$$\lim_{\mathbf{k}\to\mathbf{k}'}\langle n_b(\mathbf{k})n_b(\mathbf{k}')\rangle\propto |\mathbf{k}-\mathbf{k}'|^{-d_F}$$

A fractal structure in momentum space with $\hat{d}_F = d - d_F$ is **locally** formed!

At **midrapidity** region the momentum space fractal becomes a cartesian product (d = 3):

Transverse momentum & Longitudinal momentum

leading to the transverse momentum scaling law:

$$\lim_{\mathbf{k}_{\perp}\to\mathbf{k}_{\perp}'} \langle n_b(\mathbf{k}_{\perp}) n_b(\mathbf{k}_{\perp}') \rangle \propto |\mathbf{k}_{\perp}-\mathbf{k}_{\perp}'|^{-\frac{2d_F}{3}}$$

2*d*-fractal in transverse momentum space with $\hat{d}_{F,\perp} = 2 - \frac{2}{3}d_F$

 \mathbb{I}

∜

Local, power-law distributed, fluctuations in transverse momentum space!

Intermittency

Experimental observation of local, power-law distributed fluctuations $\downarrow\downarrow$ Intermittency in transverse momentum space (net protons at mid-rapidity)

(Critical opalescence in ion collisions)

- Transverse momentum space is partitioned into *M*² cells
- Calculate second factorial moments
 *F*₂(*M*) as a function of cell size ⇔
 number of cells M:

$$F_2(M) \equiv rac{\sum\limits_m \langle n_m(n_m-1)
angle}{\sum\limits_m \langle n_m
angle^2},$$

where $\langle \ldots \rangle$ denotes averaging over events.

For local power-law fluctuations:

 $F_2(M) \propto (M^2)^{\phi_2}$ for $M^2 \gg 1$

with $\phi_2 = \frac{1}{2}(2 - \hat{d}_{F,\perp}) \rightarrow$ Intermittency index \Downarrow

Critical fluctuations linked to the QCD critical point:

$$\phi_2 = \frac{d_F}{3} = \frac{5}{6}$$
; with $d_F = \frac{5}{2}$ for 3d Ising

Critical Intermittency \Rightarrow Measurement of ϕ_2

Measurement of ϕ_2 in NA49 (SPS, CERN) data

Very small number of critical proton pairs in $Si+Si! \Rightarrow$ need for very large statistics

NA49 result:

 $\phi_2^{(Si)} = 0.96^{+0.38}_{-0.25}$

T. Anticic et al, NA49 Collaboration, Eur. J. Phys. C 75, 587 (2015)

 ϕ_2 measurement \Downarrow

advanced techniques (see N. Davis talk)

https://arxiv.org/abs/2409.14185v1

Factorial moment scaling with order

An **alternative** proposal for critical point search:

- Experimental observables exclusively related to **hadrons** ⇒ signal from the phase of broken symmetry
- Study higher order factorial moments in the symmetry broken phase (average number of multiplets of order *q* per cell and event):

$$F_q(M) \equiv rac{\displaystyle\sum_m \langle n_m(n_m-1)\dots(n_m-q+1)
angle}{\displaystyle\sum_m \langle n_m
angle^q},$$

• Higher order factorial moments vs. second order one:

$$F_q(M) = (F_2(M))^{eta_q}$$
 ; $eta_q = (q-1)^{
u}$

 \downarrow ν is the main observable

Theoretical predictions based on Ginzburg-Landau free energy calculations in the symmetry broken phase:

For second order transitions $\Rightarrow \nu \approx 1.3$

R.C. Hwa and M.T. Nazirov, Phys. Rev. Lett. 69, 741 (1992)

Generalized to a **universal** exponent $\nu \approx 1.33$ (for first **and** second order transitions)

A.K. Mohanty and S.K. Kataria, Phys. Rev. Lett. 73, 2672 (1994).

Intermittency in RHIC-STAR

Physics Letters 8 845 (2023) 138165

Energy dependence of intermittency for charged hadrons in Au+Au collisions at RHIC

The STAR Collaboration

M.I. Abdullamid⁴, B.E. Abona¹⁸, J. Adam², L. Adamczyk¹, J.R. Adams²⁰, I. Aggarwal¹⁹, M.M. Aggarwal¹⁹, Z. Ahamne⁴⁰, D. M. Anderso¹⁶, E. C. Aschenauer, S. Aslam², J. Acthino¹, V. Bairath¹¹, ¹ Beicle¹, M. Balerk¹¹, J. Beicle¹, B. Bardenburg¹⁰, X. Z. Cai¹⁸, H. Caine¹⁸, M. Calderón de Li Barca Sanchez, D. Cebra¹, J. Cesta¹¹, T. S. Beicklow²¹, D. Brandenburg¹⁰, X. Z. Cai¹⁸, H. Caine¹⁸, M. Calderón de Li Barca Sanchez, D. Cebra¹, J. Cesta¹¹, H. Chen¹, J. Chen¹¹, J. C

Search for the scaling law:

$$F_q(M) \sim (F_2(M))^{(q-1)^{1.3(3)}}$$

in Au+Au collisions at different energies

b 4 T

STAR results

• For all charged particles it is calculated

$$\Delta F_q(M) = F_q^{(data)}(M) - F_q^{(mixed)}(M)$$

• For $q \leq 6$ a scaling law with $\nu < 1$ for all energies is found:

 $\Delta F_q(M) = (\Delta F_2(M))^{(q-1)^{\nu}}$

Comments on STAR analysis (procedure)

• The transverse momentum fluctuations analysed in STAR not directly related to order parameter fluctuations:

All charged particles \Rightarrow dipions ((π^+ , π^-)-pairs), protons

•
$$\Delta F_q(M) = F_q^{(data)}(M) - F_q^{(mixed)}(M)$$
 does not remove all the background even for $q = 2!$

see T. Anticic et al, NA49 Collaboration, Eur. J. Phys. C 75, 587 (2015)

 Maximum number of cells is limited to M_{max} = 100 ⇒ In critical intermittency M_{max} is limited only by experimental resolution! In the symmetry broken phase particle distributions have finite moments

 \downarrow

A theorem from probability theory:

 $F_q(M)$ cannot increase faster than $L^{q \log(q)}$ with increasing q

Based on hypercontractivity and concentration of measure

M. Vladimirova, S. Girard, H. Nguyen and J. Arbel, Stat. 9, e318 (2020);

A. Brofas, M. Zampetakis and F.K. Diakonos, https://arxiv.org/abs/2409.19412

∜

The behaviour $F_q \sim (F_2)^{(q-1)^{1.3}}$ can only be **transient** (for $q \leq q_{max}$)!

Comments on STAR analysis (theory)

• In Ginzburg-Landau free energy approach an asymptotic expansion for $q \rightarrow \infty$ leads to

$$F_q \sim (F_2)^q$$
 ; $q
ightarrow \infty$

in accordance with the previous theorem.

• A scaling law of the form:

$$F_q \sim (F_2)^{(q-1)^{1.3}}$$
 ; $q \leq q_{max}$

holds for **infinitely many** distributions of **conventional** origin!

₩

The scaling law $F_q \sim (F_2)^{(q-1)^{1.3}}$ for $q \leq q_{max}$ cannot be used as a signal for a critical point!

F.K. Diakonos (U.o.A.)

< 177 ▶

Sac

Comments on STAR analysis (theory)

Example: Negative Binomial distribution with real r and any p!

$$R_{NB}(q,r) = \ln\left(\frac{\ln(F_{q,NB}(r))}{\ln(F_{2,NB}(r))}\right) \quad ; \quad x = \ln(q-1)$$

Similarly, for mixture of Poissons, discrete Weibull, etc.

see A. Brofas, M. Zampetakis and F.K. Diakonos, https://arxiv.org/abs/2409.19412

Comments on STAR analysis ($\bar{\nu} < 1$)

STAR: differences of factorial moments!!

$$F_{q,A} = a(q)F_{2,A}^{\beta_q}$$
 $(A = d, m);$ $\Delta F_q = \bar{a}(q)\Delta F_2^{\bar{\beta}_q}$
with $\beta_q = (q-1)^{\nu}$ and $\bar{\beta}_q = (q-1)^{\bar{\nu}}$

The amplitude ratio $\frac{\bar{a}(q)}{a(q)}$ is important for ΔF_q scaling!

For
$$F_{2,d} \approx F_{2,m}$$
, $\Delta F_2 \ll F_{2,A}$ and $\frac{\tilde{a}(q)}{a(q)} > \beta_q F_{2,m}^{\beta_q - 1} \Rightarrow \bar{\nu} < 1$

Easily verified through toy-model simulations!

Summary, conclusions and outlook

- The scaling relation relating higher moments with the second moment is **inadequate** for the search of the QCD critical point
- Published STAR intermittency results can be understood through correlations originating from **conventional** distributions.
- Critical Intermittency analysis, based on the **second factorial moment** is the most promising perspective for the detection of the **critical point**:

order parameter fluctuationsadvanced techniques $M \gg 1$ (exp. resol.)very large statistics!

Thank you!

æ

一

▶ ∢ 🗐

DQC