

Bundesministerium für Bildung und Forschung

FSP LHCb Erforschung von Universum und Materie

Recent Measurements of the CKM Angle γ at LHCb

Halime Sazak

43rd International Symposium Particle in Physics Conference

Demokritos, Athens, Greece 22 - 25 October 2024

on behalf of LHCb Collaboration

Contents

PIC 2024

 \mathbf{Y} Simultaneous determination of the CKM angle γ and parameters related to the mixing \bigvee Measurements of the CKM angle γ using $B^{\pm} \rightarrow D^*h^{\pm}$ channels \bigvee A model independent measurement of the CKM angle γ in partially reconstructed $B^{\pm} \rightarrow D^*h^{\pm}$ decays with \bigvee Measurement of the CKM angle γ in the $B^0 \to DK^{*0}$ channel using self-conjugate $D \to K_s^0 h^+ h^-$ decays \bigvee Study of CP violation in $B^0 \to DK^*(892)^0$ decays with $D \to K\pi(\pi\pi), \pi\pi(\pi\pi), KK$ final states \bigvee Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{*}(892)^{\pm}$ decays

LHCb: Large Hadron Collider Beauty Experiment

Precision measurements of particles containing b & c quarks mainly produced in the forward direction at LHC

6*fb*⁻¹@13 TeV - (2015 - 2018)

Increasing luminosity @ 13.6 TeV

Physics motivation : CKM matrix and unitary conditions

- goal of the Flavour Physics
- 4 parameters: A, λ , ρ , η
 - 3 angles

PIC 2024

• 1 complex phase

 Parameters are obtained and tested wrt data rich pheno and large mass range): \rightarrow Nucleons, K, D, $B_{(s)}$, and top quark physics

• The rates of the decay processes are parametrized by the CKM matrix elements

Halime SAZAK

• Unitarity triangle in the $(\bar{\rho}, \bar{\eta})$ complex plane

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Physics motivation : CKM matrix and unitary conditions

- In order to verify the unitarity of the CKM matrix
- can be measured from the processes mediated
- - theoretically clean
 - "Standard candle" of the Standard Model
- branching fractions
- challenge the Standard Model

Loop level (indirect measurement)

"sensitive to New Physics"

PIC 2024

 \rightarrow Complex phase $\gamma = arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ which is a source of CP violation

• Only angle easily accessible at Tree-level (direct measurement)

• Interference between between $b \rightarrow c$ and $b \rightarrow u$ quark transitions

• Precise measurements of the magnitudes of the CKM matrix elements : mixing,

• Sub-degree level of measurements to be compared with the CKMfitter global fit to

Physics motivation : Unitarity triangle

- Discrepancy between these will indicate "New Physics"

PIC 2024

Direct measuments (Pure SM like)

• Many different channels used to measure the angles and sides of the triangle

http://ckmfitter.in2p3.fr/

Indirect measuments

(Possible sensitivity to NP)

6

Simultaneous determination of the CKM angle γ and parameters related to the mixing

\checkmark Measurements are performed from the analysis of Beauty and charm sectors which are sensitive to γ and charm mixing parameters

✓ Analysis based on data samples Run1+Run2 corresponding to an integrated luminosity of $9fb^{-1}$

LHCb-CONF-2024-004

<u>Combination of CKM angle γ </u>

Inputs from beauty sector

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^{\pm} h'^{\mp}$	[35]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	$\mathrm{Run}\;1\&2$	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	[36]	Run $1\&2$	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^{\pm} h^{\prime \mp} \pi^0$	[37]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[38]	$\mathrm{Run}\ 1\&2$	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[39]	$\mathrm{Run}\ 1\&2$	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^{\pm} h^{\prime \mp} \ (\mathrm{PR})$	[35]	$\mathrm{Run}\ 1\&2$	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K^0_{\rm S} h^+ h^- ({ m PR})$	[20]	Run 1&2	New
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow K_{ m S}^0 h^+ h^- ~({ m FR})$	[21]	Run 1&2	\mathbf{New}
$B^{\pm} \to DK^{*\pm}$	$D \to h^{\pm} h'^{\mp}$	$[22]^{\dagger}$	Run 1&2	Updated
$B^{\pm} \to DK^{*\pm}$	$D \to h^\pm \pi^\mp \pi^+ \pi^-$	[22] [†]	Run 1&2	Updated
$B^{\pm} \to DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[<mark>22</mark>] [†]	Run 1&2	\mathbf{New}
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D ightarrow h^{\pm} h'^{\mp}$	[40]	Run 1	As before
$B^0 \to DK^{*0}$	$D \to h^{\pm} h'^{\mp}$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D \to h^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[23]	Run 1&2	Updated
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	Run 1&2	Updated
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[41]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	$[25, 42]^{\dagger}$	Run 1&2	Updated
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[43]	Run 1&2	As before

PIC 2024

Halime SAZAK

• Combination of measurements sensitive to CKM angle γ 198 observables to determine 53 free parameters with all

frequentist treatment

• External inputs from BESIII and CLEO Collaborations

Inputs from charm sector

D decay

Observable(s)

- $D^0 \rightarrow h^+ h^-$
- $D^0 \to K^+ K^-$
- $D^0
 ightarrow h^+ h^-$
- $D^0 \rightarrow h^+ h^-$
- $D^0 \to K^+ \pi^-$ (double tag) $R^{\pm}, (x'^{\pm})^2, y'^{\pm}$
- $D^0 \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-} \qquad (x^2 + y^2)/4$
- $D^0 \rightarrow K^0_{
 m S} \pi^+ \pi^-$
- $D^0 \rightarrow K^0_{\rm S} \pi^+ \pi^-$
- $D^0 \rightarrow K^0_{
 m S} \pi^+ \pi^-$
- $D^0 \rightarrow \pi^+ \pi^- \pi^0$
- ΔA_{CP} $A_{CP}(K^+K^-)$ $y_{C\!P} - y_{C\!P}^{K^-\pi^+}$ ΔY $D^0 \to K^+ \pi^-$ (single tag) $R_{K\pi}, A_{K\pi}, c_{K\pi}^{(\prime)}, \Delta \epsilon$ x, y $x_{CP}, y_{CP}, \Delta x, \Delta y$ $x_{CP}, y_{CP}, \Delta x, \Delta y$ $\Delta Y^{ ext{eff}}$

NEW LHCb-CONF-2024-004

	Ref. Dataset		Status since		
			Ref. [14]		
	[44 - 46]	Run 1&2	As before		
	[46 - 48]	Run 2	As before		
	[49, 50]	Run 1&2	As before		
	[51 - 54]	Run 1&2	As before		
	[55]	Run 1	As before		
$c_{K\pi}^{(\prime)}$	[27, 56]	Run 1&2	Updated		
	[57]	Run 1	As before		
	[58]	Run 1	As before		
	[59]	Run 1	As before		
	[60, 61]	Run 2	As before		
	[26]	Run 2	New		

- Compatible with the previous LHCb combination
- uncertainy wrt the *B*⁺ and *B*⁰ measurements
- Tension between charged and neutral B mesons resolved

PIC 2024

 \bullet The most precise determination of γ from a single experiment to date! [LHCb-CONF-2022-003] + Time-dependent and tagging $B_s^0 \rightarrow D_s^{\mp} K^{\pm}(\pi\pi)$ analysis used Run1 & Run2 \rightarrow constraint on $\gamma \sim 20^{\circ}$ level of precision and the most probable values seems to be high

Halime SAZAK

2022 LHCb average : $\gamma = (63.8^{+3.5}_{-3.7}) | \sqrt{~1^{\circ}} \text{ more precise } \text{New LHCb average : } \gamma = (64.6 \pm 2.8)^{\circ}$

Coherence with

$\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$

(<u>CKM fitter</u>, frequentist)

$\gamma = (64.9 \pm 1.4)^{\circ}$ (UTfit, Bayesian)

- Neutral (π^0 or γ) reconstructed or not
- Two separate measurements with the same decay chain but different techniques
- $D^* \rightarrow D\pi^0$ and $D \rightarrow K_S^0 \pi^+ \pi^- / D \rightarrow K_S^0 K^+ K^-$
- \checkmark LHCb performed decays involving the excited D^* states which also offers good sensitivity
- \checkmark Final states need to be accessible to both D^0 and \overline{D}^0 to have an interference

Measurements of the CKM angle γ using with $B^{\pm} \rightarrow D^* h^{\pm}$

$\checkmark B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ are the golden modes to measure the CKM angle γ directly, where D meson can be reconstructed in different final states

 \checkmark LHCb are performed analysis using $B^{\pm} \rightarrow D^*h^{\pm}$ (h^{\pm} can be either kaon or pion), where D^* reconstructed through the decays of $D^* \rightarrow D\gamma$ and

Measurements of the CKM angle γ using (fully reconstructed) $B^{\pm} \to D^* h^{\pm}$ channels

 $\checkmark A$ measurement of the CP-violating observables from $B^{\pm} \rightarrow D^*h^{\pm}$ (h^{\pm} can be either kaon or pion), where D^* reconstructed through the decays of $D^* \to D\gamma$ and $D \to K_S^0 \pi^+ \pi^-/D \to K_S^0 K^+ K^-$

✓ Signal yields variation analysis across the D decay phase space

✓ Analysis based on Run1+Run2 data samples corresponding to a total integrated luminosity of $9fb^{-1}$

Measurements of the CKM angle γ using $B^{\pm} \rightarrow D^* h^{\pm}$ channels

$\bullet B^{\pm}$ decays with $D^* \to D\pi^0/\gamma$ with all final states reconstructed :

- $-D \to K^0_{\rm S} \pi^+ \pi^-$
- $-D \to K^0_{\rm S} K^+ K^-$

PIC 2024

• Reconstruction requirements on the neutral (π^0 or γ)

In order to extract CP-observables, unbinned extended maximum likelihood-fit to the 2D invariant mass of $B \rightarrow m(Dh)$ and $m(D\pi^0/\gamma)$ in each categories (B^{\pm} , D^* decays, D decays, DP bins, etc.)

+The yields of B^{\pm} in the i^{th} bin

 $\kappa_{R^0} \rightarrow DK^{*0} = 0.958^{+0.005}_{-0.046}$

+ External inputs c_i , s_i from the CLEO and BESIII Collaborations

(2023)013

12

Measurements of the CKM angle γ using $B^{\pm} \rightarrow D^* h^{\pm}$ channels

The result of the CP-violating observables:

+ Most precise determination of γ with these channels to date and provide good agreement with the world average!

PIC 2024

Halime SAZAK

- Expected per bin asymmetry for $B^{\pm} \to D^* K^{\pm}$ and $B^{\pm} \to D^* \pi^{\pm}$ obtained by the CPviolating observables (solid lines) and obtained in fit with independent bin yields
- Coherence between the individual bin asymmetries from the fit and the
- prediction from the CP-violating observables measured in the fit

Bin asymmetries between $D^* \to D\gamma$ and $D^* \to D\pi^0$ are opposite in sign

<u>JHEP12(2023)013</u>

$B^{\pm} \rightarrow D^* h^{\pm}$ decays with $D \rightarrow K_S^0 h^+ h^- (h = \pi, K)$

✓ Analysis based on Run1+Run2 data samples corresponding to an integrated luminosity of $9fb^{-1}$

where D^* reconstructed through the decays of $D^* \rightarrow D\gamma$

✓ First measurement at LHCb performed using partially reconstructed $B^{\pm} \rightarrow D^*h^{\pm}$ (h^{\pm} can be either kaon or pion),

A model independent measurement of the CKM angle γ in partially reconstructed $B^{\pm} \rightarrow D^* h^{\pm}$

The D-meson reconstructed in the selfconjugate modes:

- $-D \to K^0_{\rm S} \pi^+ \pi^-$
- $-D \to K^0_{\rm S} K^+ K^-$
- $\bullet B^{\pm} \rightarrow [D\gamma/\pi^0]h^{\pm}$ with partial reconstruction of D^* and $D \rightarrow K_{\rm S}^0 h^+ h^-$

No reconstruction requirements on the neutral $(\pi^0 \text{ or } \gamma)$

Binned extended maximum likelihood-fit to the reconstructed mass $B \rightarrow m(Dh)$

Halime SAZAK

15

A model independent measurement of the CKM angle γ in partially reconstructed $B^{\pm} \rightarrow D^* h^{\pm}$

\bullet The contribution to the uncertainty on γ statistically dominated • Consistent with the LHCb γ combination!

[LHCb-CONF-2022-003]

Results interpreted in terms of :

Strong phase inputs from CLEO and BESIII experiments

Results are consistent with the world average and those from other $B^{\pm} \rightarrow D^*h^{\pm}$ measurements

Important to combine with the two- and four-body ADS/GLW modes in $B^{\pm} \rightarrow D^*h^{\pm}$ decays [JHEP04(2021)081]

PIC 2024

Halime SAZAK

Measurement of the CKM angle γ in the $B^0 \rightarrow DK^{*0}$ channel using self-conjugate $D \rightarrow K_{\rm S}^0 h^+ h^- {\rm decays}$

 B^0

 \checkmark Measurements are performed from a model independent study of CP violation in $B^0 \rightarrow DK^{*0}$ decays

✓ The $K^*(892)^0$ meson is referred as K^{*0} , where decays to $K^+\pi^-$

✓ Analysis based on Run1+Run2 data samples corresponding to an integrated luminosity of $9fb^{-1}$

Phys. J. C 84 (2024) 206

Measurement of the CKM angle γ in the $B^0 \to DK^{*0}$ channel using self-conjugate $D \to K^0_S h^+ h^-$ decays

- The D-meson reconstructed in the self-conjugate decays:
- $-D \to K^0_S \pi^+ \pi^ -D \rightarrow K_{\rm s}^0 K^+ K^-$

PIC 2024

 \bullet Binned fit in phase space of $D \rightarrow K_S^0 h^+ h^-$ + The separation is based on the K_S decays to $\pi\pi$ within VELO or outside for long and downstream, respectively

The 2/3rd of the statistics is from DD types events

♦ The BR of the $B^0 \to DK^*(892)^0$ BR is lower than $B^{\pm} \to DK^{\pm}$ but has larger interference $\sim 3r_{B^{\pm}}$

+ The yields of B^0 and $\overline{B^0}$ decays in a Dalitz plot bin $N_i(B^0) = h^{B^0}[F_{-i} + (x_+^2 + y_+^2)F_i + 2\kappa\sqrt{F_iF_{-i}}(x_+c_i - y_+s_i)]$ $N_i(\bar{B}^0) = h^{\bar{B}^0}[F_i + (x_-^2 + y_-^2)F_{-i} + 2\kappa\sqrt{F_iF_{-i}}(x_-c_i + y_+s_i)]$ $\kappa_{R^0} \rightarrow DK^{*0} = 0.958^{+0.005}_{-0.046}$ Phase space probabilities

Normalization factor

+ The external input parameters κ , F_{+i} , c_i , s_i are fixed to their central values in the fit.

Me 0. 120 -100 didat

Dalitz plot binning scheme

used for $D \to K_S^0 \pi^+ \pi^-$

DD tracks: K_S^0 decays downstream of VELO

18

Measurement of the CKM angle γ in the $B^0 \to DK^{*0}$ channel using self-conjugate $D \to K^0_S h^+ h^-$ decays

Simultaneous binned fit to extract the CP observables :

+ Combined values shows consistency with the LHCb γ combination average! [LHCb-CONF-2024-004]

- **BESIII** collaborations

- improved with Run3 data!

 y_{\pm} 0.4 • + External strong phase inputs of $D \rightarrow K_S^0 h^+ h^-$ from CLEO and $_{0.2}$ 0.0 - \bullet The uncertainty on γ statistically dominated. -0.2 - \bullet Reduces tension between B^+ and B^0 results ! The precision of the CP observables expected to be -0.4 --0.6 -Measurements supersede [J. High Energ. Phys. 2016, 131 (2016) 1]

PIC 2024

+0.065

Halime SAZAK

Eur. Phys. J. C 84 (2024) 206

Study of CP violation in $B^0 \rightarrow DK^*(892)^0$ decays with $D \rightarrow K\pi(\pi\pi), \pi\pi(\pi\pi), KK$ final states

 \checkmark Measurements of CP-violating observables associated with the interference of in the decays of $B^0 \rightarrow D^0 K^*(892)^0$ and $B^0 \to \overline{D}^0 K^*(892)^0$ decay amplitudes performed in the $D^0 \to K^{\mp} \pi^{\pm}(\pi^+ \pi^-)$, $D^0 \to \pi^+ \pi^-(\pi^+ \pi^-)$ final states

✓ The $K^*(892)^0$ meson is referred as K^{*0} , where decays to $K^+\pi^-$

 \checkmark ADS (CF, DCS decays like $D^0 \rightarrow K^{\mp} \pi^{\pm}(\pi^+ \pi^-)$, etc.) and GLW (CP-eigenstate decays $D^0 \rightarrow \pi^+ \pi^-, K^+ K^-$, etc.) methods performed

✓ Analysis based on Run1+Run2 data samples corresponding to an integrated luminosity of $9fb^{-1}$

PIC 2024

Halime SAZAK

- + Simultaneous unbinned extended maximum likelihood fit of the B^0 reconstructed mass for each D final state flavour
- + B flavour identification from the charge of the kaon child of $K^{*0}(892) \rightarrow K^+\pi^-$ (self-tagging)
- CP-observables: ratio and asymmetry measured of ADS/GLW modes + 60% improvement on the statistical precision of CP-observables wrt the

$$egin{aligned} \mathcal{R}_{CP}^{KK} & 0.811 \pm \ \mathcal{A}_{CP}^{KK} & -0.047 \pm \ \mathcal{R}_{CP}^{\pi\pi} & 1.104 \pm \ \mathcal{A}_{CP}^{\pi\pi} & -0.034 \pm \ \mathcal{R}_{CP}^{4\pi} & 0.882 \pm \ \mathcal{A}_{CP}^{4\pi} & 0.021 \pm \ \end{aligned}$$

 $\pm 0.057 \pm 0.017$ $\pm 0.063 \pm 0.015$ -0.111 ± 0.026 $\pm 0.094 \pm 0.016$ $\pm 0.086 \pm 0.033$ $\pm 0.087 \pm 0.016$

+ Combination shows competitive sensitivity on γ with the B^+ decays **PIC 2024** Halime SAZAK

Measurement of the CKM angle γ with $B^0 \to D(\to K\pi(\pi\pi), \pi\pi(\pi\pi, KK))K^*$

• Most precise result in $B^0 \rightarrow DK^*(892)^0$ decays to date

- \bullet Coherence with the LHCb γ combination!
- \bullet Combined results of physics parameters with $D \rightarrow K_{S}^{0}h^{+}h^{-}$
- + The most compatible γ obtained from multiple of solutions

Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{*\pm}$ decays

 \checkmark Measurements are performed from CP observables and the CKM angle γ in $B^{\pm} \rightarrow DK^{*\pm}$ where $K^{*\pm}$ refers to the $K^{*}(892)^{\pm}$ resonance, decays to $K^{*\pm} \to K_s^0 \pi^{\pm}$ and D represents a superposition of D^0 and \overline{D}^0 states.

✓ Analysis based on Run1+Run2 data samples corresponding to an integrated luminosity of $9fb^{-1}$

LHCb-PAPER-2024-023

Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{*\pm}$

PIC 2024

Halime SAZAK

- $\bullet B^{\pm} \rightarrow DK^{*\pm}$ has similar BF and provide similar sensitivity to γ as $B^{\pm} \rightarrow DK^{\pm}$ golden channel
- combined results of ADS/GLW and BPGGSZ to determine the CP
- First time measurement for $B^{\pm} \to DK^{*\pm}$, where $D \to K_S^0 h^+ h^-$ at LHCb
- \bullet The lower yields from $B^{\pm} \to DK^{*\pm}$ than $B^{\pm} \to DK^{\pm}$, difference of the
- reconstruction efficiency of $K^{*\pm}$ and K^{\pm}
 - extremely lower background!

• First observation of the suppressed $B^{\pm} \rightarrow [\pi^+ K^-]_D K^{*\pm}$ and $5600 B^{\pm} \to [\pi^{+}K^{-}\pi^{+}\pi^{-}]_{D}K^{*\pm} \text{ decays}$

 $A_{\pi K} = -0.73 \pm 0.16 \pm 0.03$

 $A_{\pi K \pi \pi} = -0.19 \pm 0.22 \pm 0.01$

Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{*\pm}$

External inputs measured by CLEO and BESIII Collaborations

PIC 2024

Halime SAZAK

NEW (Preliminary) **LHCb-PAPER-2024-023**

Measurement of CP asymmetry in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ decays

✓ Measurement is performed of CP observables in $B_s^0 \to D_s^{\mp}K^{\pm}$

✓ Analysis based on Run2 data samples corresponding to an integrated luminosity of $6fb^{-1}$

 B^0_{s}

LHCb-PAPER-2024-020

with mixing

PIC 2024

Halime SAZAK

Measurement of CP asymmetry in $B_{c}^{0} \rightarrow D_{c}^{-}K^{+}$ decays

PIC 2024

Halime SAZAK

28

Conclusions

Mathebolic Recent LHCb highlights from the seven analysis for the measurement of the CKM angle γ were presented

Many analysis with Run1 + Run2 completed

Mathebolic Run3 is in progress with the stably working detector

hadronic decays

PIC 2024

- **M** The new software-based trigger is much more efficient on

Halime SAZAK

 \mathbf{M} With the larger statistics precision on the CKM angle γ measurements and will help improving the knowledge for the future studies!

Stay Tuned!

THANK YOU FOR YOUR ATTENTION !

Measurements of the CKM angle γ using $B^{\pm} \rightarrow D^* h^{\pm}$ channels

measured in the fit

PIC 2024

• Expected per bin asymmetry for $B^{\pm} \to D^* K^{\pm}$ and $B^{\pm} \to D^* \pi^{\pm}$ obtained by the CP-violating observables (solid lines) and obtained in fit with independent bin yields freely float (errors bars) + Coherence between the individual bin asymmetries from the fit and the prediction from the CP-violating observables

• Bin asymmetries between $D^* \to D\gamma$ and $D^* \to D\pi^0$ are opposite in sign — Phase shift $A(\pi^0) = -A(\gamma)$

Halime SAZAK

Measurements of the CKM angle γ using $B^{\pm} \rightarrow D^* h^{\pm}$ channels

The result of the CP-violating observables:

$$\gamma = (69^{+13}_{-14})^{\circ}$$
$$r_B^{D^*K} = 0.15 \pm 0.03$$
$$\delta_B^{D^*K} = (311 \pm 14)$$

+ Most precise determination of γ with these channels to date and provide good agreement with the world average!

Halime SAZAK

(2023)013