

Searches for BSM physics using challenging and long-lived signatures with the ATLAS detector

Xiangxuan Zheng

On behalf of the ATLAS Collaboration

PIC2024 Oct 23rd, 2024

1

Introduction

- After the discovery of the Higgs, there are many Beyond Standard Model (BSM) theories trying to explain the problems Standard Model cannot answer (dark matter, antimatter, gravity…)
	- Many of them predict particles with decays suppressed by weak coupling constants, small mass differences between particles, or heavy mediators.
		- -> Acquire large lifetimes, becoming long-lived particles (LLPs).
- ATLAS experiment at LHC have many searches for BSM phenomena.
	- LLP search: Search for new particle at life-time frontier
		- Distinctive signature \rightarrow Zero or low SM background
		- Sensitivity gain promised with accumulating luminosity
		- Unconventional / Dedicated reconstruction + trigger
		- Instrumental backgrounds: Beam-induced backgrounds, Cosmic rays, Fake, etc.

Signatures of LLPs

- LLPs can have unusual experimental signatures:
	- Tracks with unusual ionization and propagation properties
	- Small, localized deposits of energy inside of the calorimeters without associated tracks
	- Stopped particles (SPs) that decay out of time with collisions
	- Displaced vertices (DV) in the inner detector (ID) or muon spectrometer (MS)
	- Disappearing, appearing, and kinked tracks.
- The standard reconstruction algorithms may reject events or objects containing LLPs precisely.
- Dedicated searches are needed to uncover LLP signals.

Overview

Displaced vertices with collinear photons

[\[2312.03306\]](https://arxiv.org/pdf/2312.03306)

- Decay Chain: $H\rightarrow aa \rightarrow 4\gamma$
	- Axion-like particles (ALPs) decay within the calorimeter
- Range:
	- ALP mass: 0.1 GeV $< m_a < 60$ GeV
	- ALP-photon couplings: $10^{-5} < C_{a\gamma\gamma} < 1$
- 4-Photon final state
	- Opening angle of photons determined by ALP mass
	- Number of reconstructed photons:
		- 4: fully reconstructed
		- 2,3: merged or missing photons
		- 0,1: not usable
- Main background:
	- QCD Multi-photon Events.
	- Higgs Boson Decays: $H \rightarrow \gamma \gamma$.

Displaced vertices with collinear photons

- 2 NN are trained to identify merged photons
	- NN1: Signal photons vs. multi jet bkg.
	- NN2: Single vs. merged photons.
- A Data-driven sideband method is used to estimate background.
- Result:
	- No Excess Observed: Good agreement between observed and expected results.
	- Exclusion Limits:
		- Set in the ALP mass-coupling parameter space
		- Limits on $C_{a\gamma\gamma}$ derived using template fitting.

Displaced vertices in the ATLAS inner detector

[\[2403.15332\]](https://arxiv.org/pdf/2403.15332)

- Benchmark model:
	- Exotic Higgs decay
		- SM Final state: $4u$, $4b$ (4c for 5 GeV)
		- Production modes considered: ZH , WH , VBF
	- ALP produced in association with a SM vector boson
		- Final states: gg
		- Production modes considered: Za , Wa
	- Exotic top decay
		- Final states: cc , gg
		- Production modes considered: tt
- Range
	- 5 GeV < m_H < 55 GeV
	- 1 mm < $c\tau$ < 1000 mm
- Signal features:
	- Displaced jets: ≥2 hadronic jets originate from ≥1 displaced vertices
	- Displaced vertices (DVs): secondary vertices reconstructed with displacements up to 300 mm.

Displaced vertices in the ATLAS inner detector

- Main background:
	- SM hadronic jets
- Per-jet BDT is trained to identify prompt and displaced jets.
	- Trained on simulated $t\bar{t}$, W+jets, Z+jets + signal
- In signal DVs are excepted to be correlated to displaced jets.
	- DVs are matched to a jet with BDT score > 0.5
- 3 search regions, targeting ZH , WH and VBF production modes.
- Search regions are divided into control (CR), and signal regions (SR) based on event-level discriminant " BDT_{io} x BDT_{i1} " (from highest scoring jets) and number of DVs (n_{DV})

Displaced vertices in the ATLAS inner detector

- Predict background from P(jet matched to DV) in $CR \rightarrow per$ -event weights applied in SR
- Exclusion Limits:
	- No significant excess of signal events observed.
	- Limits on BR($H \rightarrow ss$) are most stringent to date for $m_s < 40$ GeV and 1 mm < $c\tau_s$ < 100 mm

First limits on ALPs with photon coupling suppressed at LHC!

9

Displaced Dark Photon Jets VBF Production

[\[2311.18298\]](https://arxiv.org/pdf/2311.18298)

- The Falkowski Ruderman-Volansky-Zupan (FRVZ) benchmark model
	- $H \to 2\gamma_d + X$ via Higgs & vector portals
	- SM final states ($\gamma_d \rightarrow e^+e^-/qq$) + MET signature
- Small coupling ε : long-lived γ_d
	- $10^{-6} < \epsilon < 10^{-5}$
- With m_{γ_d} << m_H : collimated decay
	- 2 m_e < m_{γ_d} ≤ 15 GeV
- Investigate VBF production mode
- Signal features: Displaced Dark Photon Jets (Displaced DPJs)
	- 2 channels: muonic DPJ (μDPJ), calorimeter DPJ (caloDPJ)

Displaced Dark Photon Jets VBF Production

- Displaced signature
	- Sensitive to γ_d decays after pixel detector
- Main backgrounds:
	- QCD hadronic jets
	- Non-collisional: cosmic rays & beam-induced (BIB)
- CNN is trained to reject cosmic contamination, BIB & QCD multi-jet.
- ABCD method is used to do the Datadriven background estimation

$$
\mu \text{DPJ}
$$

$$
\gamma_d \to \mu^+ \mu^-
$$

Targeting decays outside ID acceptance

Pair of close-by MS tracks with no matching tracks in the ID

Targeting decays in HCAL

Low EM fraction jets with no matching MS tracks

calorimeter DPJ

muonic DPJ

Displaced Dark Photon Jets VBF Production

- No new physics observed
- Good agreement between observed and expected in SRs
	- caloDPJ high E_T^{miss} SR shows slight disagreement with observed yield; around 1σ above expectation
- Set limits on BR($H\rightarrow 2\gamma_d+X$) as a function of $c\tau$
	- Using lifetime reweighting algorithm to extrapolate signal efficiencies at different $c\tau_{\gamma_d}$ values

Hadronic LLPs + Leptons/Jets

[\[2407.09183\]](https://arxiv.org/pdf/2407.09183)

- Benchmark model:
	- Hidden sector(HS) model:
		- Φ can be produced in association with a vector boson (W/Z) decaying to leptons.
	- Axion-like particles (ALPs) model
	- Dark photon (Z_d) model
- Signal features:
	- CalRatio jets (CalR): jets from LLP decaying after the 1st HCAL layer
		- Trackless and narrower
		- High E_H/E_{EM} (The ratio of energy deposited in the HCAL to the energy deposited in the ECAL, the so-called CalRatio).
- 3 analysis channels with different final status:
	- CalR + 2 jets: 1 CalRatio jet and 2 prompt jets
	- CalR + W/Z : \geq 1 CalRatio jets and \geq 1 leptons from W/Z bosons

Particles with higher lifetime have higher E_H/E_{EM}

Hadronic LLPs + Leptons/Jets

- Main background:
	- CalRatio jet + 2 prompt jets:
		- SM multijets
		- Non-collisional: cosmic rays & beam-induced (BIB)
	- CalRatio jet + W/Z :
		- SM processes involving vector bosons produced with jets
		- single- or pair-production of top quarks
- A NN is trained to identify CalRatio jets, qcd jets and BIB jets.
- Additional NN/BDTs are used to separate signal and bkg events.
- Use a ABCD method to do the data-driven background estimation

Hadronic LLPs + Leptons/Jets

- No significant excess is observed
- Hidden sector (HS) model:

3x improvement for $BR(H \rightarrow ss \rightarrow 4b)$ with respect to previous search [\[JHEP06\(2022\)005\]](https://link.springer.com/article/10.1007/JHEP06(2022)005)

• Dark photon (Z_d) model:

 σ > 0.1 pb for Z_d with $c\tau \in 0.1$ mm – 10m (10x improvement with respect to previous search [\[PRL122\(2019\)151801\]](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.151801).)

• Axion-like particles (ALPs) model:

Photo-phobic ALP σ > 0.1 pb excluded for $c\tau \in 0.1$ mm – 10 m

15

Displaced leptons

- Benchmark: Gauge-Mediated Supersymmetry Breaking (GMSB)
	- Lightest SUSY particle (LSP): nearly massless gravitino.
	- Next-to-Lightest SUSY particle (NLSP): long-lived slepton (selectron, smuon, stau).
	- LLPs produce displaced electrons or muons through slepton decay.
- Signal features:
	- Displaced pairs of SM leptons
		- Reconstruct e/μ using standard and LRT tracks
		- Can look in 1e, $e\gamma$, $\gamma\gamma$, where one decay is outside ATLAS or displaced e recorded as γ .
- Final status:
	- ee , $e\mu$, $\mu\mu$ for Run 2 and Run 3
	- 1e, $e\gamma$, $\gamma\gamma$ for Run 3

Displaced leptons

- Main background:
	- Heavy-flavor hadrons (FHF)
	- cosmic rays
- Liquid Argon (LAr) Calorimeter precision timing is exploited to target LLPs.
	- O(200ps) resolution for energetic e/γ (limited by beamspread)
	- Enough to resolve "late" e/γ from LLP decays against prompt SM background
- ABCD method is used to do the Data-driven background estimation
- For Run 3 data, 2 BDTs are trained to find displaced electrons misidentified as photons due to their displacement and lack of tracks.
	- eBDT: Identifies displaced electrons.
	- γ BDT: Identifies displaced electrons misreconstructed as photons

Displaced leptons

New sensitivity for long-lived decays to electrons from BDT \sim 5x for selectrons, \sim 3x for staus $\tilde{e}\cdot\tilde{e}$; $\tilde{e} \rightarrow e \tilde{G}$ $\widetilde{\tau}\widetilde{\cdot}\widetilde{\tau};\widetilde{\tau}\rightarrow\tau\,\widetilde{G}$ $\tilde{\mu}$ - $\tilde{\mu}$; $\tilde{\mu} \rightarrow \mu$ G $10⁴$ $10⁴$ Lifetime [ns] .ifetime [ns] ifetime [ns] ATLAS Preliminary --- Expected Limit (±1 oexp) **ATLAS** Preliminarv **ATLAS** Preliminary $---$ Expected Limit (±1 σ _{exp}) Expected Limit ($\pm 1 \sigma_{\text{evn}}$) 10^3 = $\sqrt{s} = 13$ TeV, 140 fb⁻¹ F \sqrt{s} =13 TeV, 140 fb⁻¹ 10^{3} \sqrt{s} =13 TeV, 140 fb **Observed Limit** bserved Limit Vs=13.6 TeV, 56.3 fb $\sqrt{s} = 13.6$ TeV, 56.3 fb⁻¹ $\sqrt{s} = 13.6$ TeV, 56.3 fb⁻¹ PRL 127 (2021) 051802 127 (2021) 051802 PRL 127 (2021) 051802 10^2 All limits at 95% CL All limits at 95% CL All limits at 95% CL $10 \equiv$ 10 10^{-7} 10^{-1} 10^{-} 10^{-2} 10^{-2} 10^{-} 10 10^{-3} $10[°]$ 100 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 $m(\tilde{e})$ [GeV] $m(\tilde{\mu})$ [GeV] $m(\tilde{\tau})$ [GeV]

- First ATLAS Search Result at \sqrt{s} = 13.6 TeV, no significant deviation from SM expectation
- Largest local significance 2.2 σ in LRT-enriched ee final state (1 event observed, $0.0016^{+0.0029}_{-0.0016}$ expected)
- Adding early Run 3 data + new triggers improves sensitivity w.r.t. previous search [\[PRL 127 051802\]](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.051802)
	- Smuon limits for μμ final states only gains here driven by Run 3 LRT triggers
	- BDT region probes new final states, allows exclusion at higher lifetimes

Summary

- In ATLAS, Many LLP searches are trying to search for BSM physics, both for Run 2 and Run 3.[\[ATLAS Public Results\]](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/)
- The LLP could escape "standard" search methods.
	- Dedicated searches are needed.
- By now, no significant excess is observed for LLP.
- More exciting results expected from Run 3.
- LLP searches are expected to gain search sensitivity in HL -LHC.

Backup

Special Reconstruction: Large Radius Tracking

- Standard track reconstruction in ATLAS designed for tracks pointing back to Primary Vertex (PV)
- Large Radius Tracking (LRT) additional tracking pass on unused hits after initial tracking pass, relaxing some requirements (e.g. impact parameters)
- Difficult computational problem high pileup, many random hits in the tracker
- Improvements in LRT [\[IDTR-2021-03\]](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDTR-2021-03/)
	- Run on all events, rather than prev. ~10%
	- In Run 2: can now look at LRT with full dataset!
	- In Run 3: [\[new LRT triggers\]](https://iopscience.iop.org/article/10.1088/1748-0221/19/06/P06029) increase sensitivity to LLP decays!

Displaced vertices with collinear photons

5 signal categories, events assigned in this order:

- **4S**: At least 1 tight ID γ , all remaining γ loose ID
- **3S**: 3 tight ID photons
- **2M**: 2 merged photons, no additional loose ID γ
- **1M1S**: Exactly 1 merged and 1 loose ID γ
- 2S: 2 tight ID γ , no additional loose ID γ
- **4Sp**: At least 3 tight ID γ , all remaining γ loose ID