Precision EWK and QCD measurements from ATLAS, CMS, LHCb

Valentina Guglielmi on behalf of ATLAS, CMS and LHCb

PIC2024, Athens, 22.10.2024

HELMHOLTZ

The standard model

DESY.

From Jan Kretzschmar, ICHEP2022

LHC and experiments

13 Years of successful data taking at the LHC covering many energies

twikiLumiPublicResults

LHC: ring of ~27 km, in Geneva (Switzerland)

EW and QCD

- EW physics at LHC can't forget about QCD
- A good QCD model is a prerequisite for EW physics
- Precise EW measurements help to constrain QCD parameters and models

$$\sigma_{pp\to X} = \sum_{i,j} \int dx_1 dx_2 f_i^p(x_1,\mu) f_j^p(x_2,\mu) \times$$

Introduction

Parameters of SM interconnected with each other, e.g.

$$m_{W} = \left(\frac{\pi\alpha_{\rm EM}}{\sqrt{2}G_{\rm F}}\right)^{1/2} \frac{\sqrt{1+\Delta r}}{\sin\theta_{\rm W}} \quad \begin{array}{c} \alpha_{\rm I} \\ \theta_{\rm T} \\ G_{\rm T} \end{array}$$

Radiative corrections Δr with largest contributions from m_t^2 , $log(m_H)$

Precision measurements:

- \rightarrow Test self-consistency of SM theory in global EW fits
- \rightarrow Tensions could be sign of BSM effects
- \rightarrow Probe BSM at energies above those explored by searches

Gfitter, Y. Fischer et al., EPS 2023

Outlook

Today I will focus on selection of most recent results

- **EW** sector, focus on electroweak parameter measurements:
 - W boson Mass and Width
 - Electroweak mixing angle
- Taus g-2
- QCD sector, selection of determinations of $\alpha_S(m_Z)$:
 - ATLAS Z p_T @8TeV
 - CMS Inclusive jets @2.76, 7, 8, 13 TeV
 - Summary of most recent determinations

Full publication list here: <u>CMS</u>, ATLAS, LHCb

ATLAS measurements of the W Boson Mass and Width

Revisit 2011 data for improved measurement of m_W and first measurement of Γ_W at LHC

- Measured from p_T^l and m_T^W distributions in $W \to l\nu$ decays ($l = e/\mu$)
- Rigorous checks of $p_T(W)$ modelling in dedicated measurements
- Progress in global PDF fits and theoretical calculations

arxiv2403.15085

DES

ATLAS results of the W Boson Mass and Width arxiv2403.15085

Separate measurement of mass and width

 $m_W = 80366.5 \pm 15.9 \text{ MeV} (9.8 \text{ stat} + 12.5 \text{ syst})$ $\Gamma_W = 2202 \pm 47 \text{ MeV} (32 \text{ stat} + 34 \text{ syst})$

- ... as well as simultaneous extraction
- Most precise single-experiment measurements of Γ_W

DESY.

8

Combination of ATLAS, LHCb, D0 and CDF EPJ C (2024) 84 451

Measurements performed at different times, using different baseline PDFs and QCD tools \rightarrow Existing result extrapolated to a common baseline

- Correct to common theory and modelling

M. Boonekamp, LHC EW WG **General Meeting, July 2024**

ATLAS, LHCb, D0: m_W = 80369.2 ± 13.3 MeV Tension between ATLAS, LHCb, D0 combination and CDF is of 3.6 σ

LHCb: m_W determination in forward acceptance suppresses PDF uncertainty in m_W average $m_W = 80364 \pm 32 \text{ MeV}$ JHEP 01 (2022) 036

CMS measurement of the W Boson Mass <u>CMS-PAS-SMP-23-002</u>

- Use well-understood subset of 13 TeV data
 - 16.8 fb^{-1} from later part of 2016 run
- p_T^{μ} distribution in bins of η_{μ} , separately for positive and negative muons
- Requires extremely good calibration of p_T^{μ} and understanding of p_T^W
- m_W extracted from profile likelihood fit to μ (η , p_T , charge)

CMS results of the W Boson Mass <u>CMS-PAS-SMP-23-002</u>

- Performed with ~10% of Run2 data
- basis for future measurements

 \rightarrow Most precise measurement from LHC m_W = 80360.2 ± 9.9 MeV, in agreement with SM

• Advances in experimental and theoretical techniques enable improved precision and lay the

 $2.4 (stat) \pm 9.6 (syst)$

The electroweak mixing angle

- At the heart of the Standard Model $sin^2\theta_W = 1$
- At higher order: $sin^2\theta_{eff}^l = k_f \cdot sin^2\theta_w$ (k_f flavour-dependent effective scaling factor absorbing higher order corr)
- $\frac{d\sigma}{d\cos\theta} \sim 1 + \cos^2\theta + \frac{1}{2}A_0(1 3\cos^2\theta) + A_4\cos\theta$

$$-m_W^2/m_Z^2$$

• At the LHC the effective mixing angle (leptonic) is measured with DY events in the Collin-Soper frame

arXiv2410.02502 Total uncertainty Statistical uncertainty LEP and SLD combination Phys. Rept. 427 (2006) 257 ל_{FB} A_{FB} $A_{FB}^{0, b}$ $A_{FB}^{0, l}$ A_l (SLD) ATLAS 7 TeV JHEP 09 (2015) 049 JHEP 11 (2015) 190 Tevatron combination PRD 97 (2018) 112007 CMS 8 TeV EPJC 78 (2018) 701 ATLAS 8 TeV preliminary ATLAS-CONF-2018-037 0.229 0.232 0.233 0.23 0.231 $sin^2 \theta_{eff}^l$

Two most precise exp. results from LEP/SLD differ by ~ 3σ

CMS and LHCb measurements of the effective weak mixing angle

- Ambiguity in quark direction resolved through rapidity-dependent measurement
- Reconstruction of muons in CMS up to $|\eta| < 2.4$ and electrons extended to $|\eta| < 4.36$ 3 categories for electrons: "e" tracker only, "g" and "h" in forward calorimeters
- High quality muon reconstruction in LHCb in $2 < \eta < 4.5$

CMS and LHCb results of the effective weak mixing angle

- In CMS PDF uncertainties profiled in fit of $\sin^2 \theta_{eff}^l$

LHCb result dominated by statistics, very promising for Run3

CMS result most precise at hadron colliders

What is g-2?

- Particles with spin (S) have a magnetic moment (μ)
- For spin-1/2 particles, quantum corrections with a gyromagnetic factor, $g \approx 2.002$ 32
- \rightarrow anomalous magnetic moment $a = \frac{g-2}{1}$

Key measurements:

- (g-2)e: Measured in Penning traps
- (g-2)µ: Measured in storage rings
- (g-2) τ : Constrained in particle collisions (e^+e^- or PbPb)

CMS as a photon collider experiment

- Observed $\gamma\gamma \rightarrow \tau\tau$ production for the first time in pp collisions
- Probed tau g-2 with unprecedented precision

Motivation for determining α_S

- Single free parameter of QCD in the $m_q \rightarrow 0$ limit
- Impact physics at the Planck scale: EW vacuum stability, GUT
- $\alpha_{\rm S}$ is among the major uncertainties of many precision measurements: Higgs couplings at the LHC • Currently, $\alpha_{\rm S}$ is the less know interaction couplings

The state of the art

DESY.

QCD PDG Review 2024

← World average (PDG 2024): $\alpha_S(m_Z) = 0.118 \pm 0.0009$

 $\rightarrow \alpha_S$ "runs" as $\approx \ln(Q^2/L^2)$ at LO, $L \approx 0.2$ GeV

How to extract α_S at LHC?

$$\sigma_{pp \to X} = \sum_{ij} f_i(x_1, \mu_F^2) \times f_j(x_2, \mu_F^2) \otimes \hat{\sigma}_{ij}(x_1, x_2, \alpha_S(\mu_R), \frac{Q^2}{\mu_R}, \frac{Q^2}{\mu_F}) + O(\frac{\Lambda_{QCD}^2}{Q^2})$$
Data $\sigma(exp)$
PDFs $f_i(\mu, x)$
PDFs $f_i(\mu, x)$
Partonic XS (pQCD)
DGLAP eq. Exp. measurements
need to be corrected by non perturbative

Two methods to compare $\sigma(exp)$ to $\sigma(pQCD)$:

- **Profiling analysis using varying PDF**+ α_S (predefined PDF from global PDF) \bullet
- Simultaneous fit of α_S and PDFs
 - Correlation between PDFs and α_{S} took into account
 - Reduced bias
 - BUT time consuming

ve effects

- **Z** p_T sensitive to $\alpha_S(m_Z)$
- Cross-sections in p_T y in full lepton phase space at 8 TeV (EPJC 84 (2024) 315)
- Theory predictions at $N^4LLa + N^3LO$

MSHT20aN3LO PDF set used to extract $\alpha_S(m_Z)$

Final result: $\alpha_{\rm S}({\rm m_Z}) = 0.1183 \pm 0.0009$

Most precise experimental measurement to date!

Combination of CMS Inclusive jets <u>CMS-PAS-SMP-24-007</u>

Extraction of α_S **running** <u>CMS-PAS-SMP-24-007</u>

Divide data into independent p_T ranges

- In each p_T range, fit PDFs and $\alpha_S(m_Z)$ simultaneously
- Define the center of gravity of each p_T range < Q >
- Evolve $\alpha_s(m_Z)$ to < Q > (CRunDec package)

$p_{\rm T}$ (GeV)	$\langle Q \rangle$	$\alpha_{\rm S}(m_{\rm Z})$ (tot)	$\alpha_{\rm S}(Q)$ (to
74–220	103.06	$0.1182 \ {}^{+0.0013}_{-0.0012}$	$0.1160 \begin{array}{c} +0.00 \\ -0.00 \end{array}$
220–395	266.63	$0.1184 \ _{-0.0012}^{+0.0011}$	$0.1019 \ ^{+0.00}_{-0.00}$
395–638	464.31	$0.1179 \ _{-0.0012}^{+0.0012}$	$0.0947 \ ^{+0.00}_{-0.00}$
638–1410	753.66	$0.1184 \ ^{+0.0013}_{-0.0012}$	$0.0898 \stackrel{+0.00}{_{-0.00}}$
1410–3103	1600.5	$0.1170 \ _{-0.0016}^{+0.0020}$	$0.0821 \ ^{+0.00}_{-0.00}$

 $\alpha_{S}(Q)$ in the five p_{T} ranges are compared to the world average and its uncertainty

 \rightarrow Running probed up to 1.6 TeV

 \rightarrow Good agreement in the entire range

DESY.

Summary of $\alpha_S(m_Z)$

•	ATLAS (A)TEEC @13TeV: JHEP 07
	<u>(2023) 085</u>

•	CMS dijets @13TeV: arXiv312.16669.	
	submitted to the EPJC	CMS E PR

- CMS azimuthal correlation $R_{\Delta\phi}$ @13TeV: <u>EPJC 84 842 (2024)</u>
- CMS energy correlators @13TeV: lacksquarePRL 133 071903 (2024)

Summary and conclusions

- EW and QCD are interconnected within each other
- Numerous results of precision electroweak and QCD physics in the last 12 months!
- lacksquare
 - Facilitated by large datasets, detailed understanding of the detectors, dedicated reconstruction techniques and state-of-the-art theory predictions
- New measurements of electroweak and QCD: m_W , Γ_W , $sin\theta_W$, g-2, $\alpha_S(m_Z)$

LHC resulted to be a powerful precision machine for experimental SM measurements

Thank you

Backup

OTHER ANALYSES: single boson, multiboson and boson+jets

- CMS, Z invisible width, at 13 TeV: PLB 842 (2023) 137563
- ATLAS, Z invisible width, at 13 TeV: PLB 854 (2024) 138705
- ATLAS, ZZ at 13 .6 TeV: PLB 855 (2024) 138764
- CMS, WW at 13.6 TeV: PLB 855 (2024) 138764
- CMS, WZ, at 13.6 TeV: CMS-PAS-SMP-24-005
- CMS, Zy invisible and triple gauge couplings, at 13 TeV: CMS-PAS-SMP-22-009 • ATLAS, WZy, at 13 TeV: PRL132 (2024) 021802
- CMS, WWy, at 13 TeV: PRL132 (2024) 121901
- ATLAS, Z+jets, at 13 TeV: JHEP 06 (2023) 080
- CMS, Z+jets, at 13 TeV: EPJC 83 (2023) 722
- CMS, W Boson Decay Branching Fractions (SMP-24-009)
- LHCb, Z production cross-section, using 5.02 TeV: JHEP 02 (2024) 070

Effective weak mixing angle

- The Forward-Backward asymmetry AFB increases with the Z boson rapidity
 - Only valence quarks contribute to the AFB
- Ambiguity in quark direction resolved through rapidity-dependent measurement
- Experimentally defined as

CMS

$$A_{FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

LHCb

$$A_{\rm FB} = \frac{N(\eta^{-} > \eta^{+}) - N(\eta^{-} < \eta^{+})}{N(\eta^{-} > \eta^{+}) + N(\eta^{-} < \eta^{+})}$$

$\gamma\gamma \rightarrow \tau\tau$ in pp collisions

- (g-2) $_{\tau}$ has a strong potential to probe new physics
 - Expect large BSM enhancement at high p_T and $m_{\tau\tau}$
- ATLAS and CMS have put limits on α_{τ} using PbPb
 - $\sigma \approx Z^4$
 - Sensitive to $m_{\tau\tau} < 40 \text{GeV}$
- New CMS results in pp collisions (<u>Rep. Prog. Phys. 87 (2024) 107801</u>):
 - Using exclusivity cuts on coplanarity and N_{tracks}
 - Fitting shape and yield in $m_{\tau\tau} > 50 \text{GeV}$
- Electric dipole moment

Rep. Prog. Phys. 87 (2024) 107801

Dominant contributions to uncertainty

- ATLAS mW: dominated by PDF, EW and muon and electron calibration

• CMS mW: 80360.2 = 2.4 (*stat*) ± 9.6 (*syst*) $\rightarrow p_T^{\mu}$ scale (4.8 MeV), PDF (4.4 MeV)