Charm: Rare, CPV, Mixing

Physics In Collisions 2024

F. Zenesini - Università di Bologna

Francesco Zenesini On behalf of the LHCb Collaboration and Belle Collaboration

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Charm Physics: Why?

- Charmed hadrons are composed of up-like quark \bullet
- Strong suppression of mixing, CPV and rare decays \rightarrow Powerful probe for indirect searches of new physics in the SM

Relatively large contributions to CP violation or FCNC can reveal new physics

- Recent discovery of CP violation in charm decays in 2019 at LHCb [Phys. Rev. Lett. 122, 211803]
- Difficult theoretical predictions in charm physics due to large QCD corrections \bullet

Recent Results at LHCb

- Rare decays:
 - Search for D^0 mesons decays to $\pi^+\pi^-e^+e^-$ and $K^+K^-e^+e^-$ final states [LHCb-PAPER-2024-047] (Paper in preparation)
 - Search for the rare decay of charmed baryon Λ_c^+ into $p\mu^+\mu^-$ final state [<u>Phys. Rev. D 110, 052007</u>]
- Mixing and CPV:
 - Measurement of $D^0 \overline{D}^0$ mixing and search for CP violation with $D^0 \to K^+\pi^-$ decays [2407.18001] • Search for charge-parity violation in semileptonically tagged $D^0 \to K^+\pi^-$ decays
 - [LHCb-PAPER-2024-044] (Paper in preparation)
 - Measurement of CP violation observables in $D^+ \to K^- K^+ \pi^+$ decays [2404.01414]

Searches for Rare Charm Decays

F. Zenesini - Università di Bologna

Search for D^0 mesons decays to $\pi^+\pi^-e^+e^-$ and $K^+K^-e^+e^-$ final states

- First LHCb search of electron modes
- Muon modes $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ observed at LHCb [Phys. Rev. Lett. 119, 181805] \rightarrow Lepton flavour universality test
- Analysis on full Run 2 dataset (6 fb^{-1})
- Sample divided according to number of Bremsstrahlung photons to control backgrounds
- Branching ratio normalized with $D^0 \to K^- \pi^+ e^+ e^-$
- Efficiency correction with MC account for data-simulation difference
- D^0 candidates tagged from $D^{*+} \to D^0 \pi_s$ for background suppressions
- Main Backgrounds: Combinatorial, Mis-ID from $D^0 \rightarrow h^- h'^+ \pi^+ \pi^-$ and partially reconstructed events due to wrong association of Bremsstrahlung photons

LHCb-PAPER-2024-047 (in preparation)

Charm: Rare, CPV, Mixing

Results for $D^0 \rightarrow \pi^+ \pi^- e^+ e^-$

- First observation in ρ and ϕ region of dielectron mass
- Branching fractions measured for this decays and upper \bullet limits provided for other regions

$D^0 \to \pi^+ \pi^- e^+ e^-$					
$m(e^+e^-)$ region	$[MeV/c^2]$	Yield	S		
Low mass	211 - 525	37 ± 13	2.8		
η	525 - 565	10 ± 7	1.6		
$ ho^0/\omega$	565 - 950	97 ± 21	5.5		
ϕ	950 - 1100	100 ± 18	8.1		
High mass	> 1100	30 ± 11	2.9		

LHCb-PAPER-2024-047 (in preparation)

Results for $D^0 \rightarrow K^+ K^- e^+ e^-$

- No evidence for this decay mode
- Upper limits of branching fractions computed for each bin
- World best precision of upper limits

D^0 .	$\rightarrow K^+ K^- e^+$	e^{-}
$m(e^+e^-)$ region	$[MeV/c^2]$	Yield
Low mass	211 - 525	4 ± 8
η	525 - 565	1 ± 2
$ ho^0/\omega$	> 565	12 ± 7

LHCb-PAPER-2024-047 (in preparation)

Results of branching fractions

• Integrating over the full dilepton invariant mass:

 $BF(D^0 \to \pi^+ \pi^- e^+ e^-) = (13.3 \pm 1.7 \pm 1.7 \pm 1.8) \times 10^{-7}$

• Results of branching fractions compatible with muon mode at 1.3σ

 $BF(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$

Phys. Rev. Lett. 119, 181805

No evidence for lepton flavour universality violation

LHCb-PAPER-2024-047 (in preparation)

$D^0 \to \pi^+ \pi^- e^+ e^-$					
$m(e^+e^-)$ region	$[MeV/c^2]$	${\cal B} \left[10^{-7} ight]$			
Low mass	211 - 525	< 4.81 (5.39)			
η	525 - 565	< 2.27 (2.74)			
$ ho^0/\omega$	565 - 950	$4.53 \pm 1.00 \pm 0.72 \pm 0.62$			
ϕ	950 - 1100	$3.84 \pm 0.70 \pm 0.39 \pm 0.53$			
High mass	> 1100	< 2.00(2.17)			
	$D^0 \to K^+$	$K^-e^+e^-$			
$m(e^+e^-)$ region	$[MeV/c^2]$	$\mathcal{B}\left[10^{-7} ight]$			
Low mass	211 - 525	< 0.97 (1.05)			
η	525 - 565	< 0.44 (0.54)			
$ ho^0/\omega$	> 565	< 2.15(2.47)			

Search for the rare decay of charmed baryon Λ_c^+ into $p\mu^+\mu^-$ final state

- Short distance (non-resonant) decays in SM heavily suppressed $BF(\Lambda_c^+ \rightarrow p\mu\mu) \sim 10^{-8}$
- Long distance (resonant) decays have higher BF i.e. $BF(\Lambda_c^+ \rightarrow p\mu\mu) \sim 10^{-6}$
 - Resonances trough ϕ, ρ, η, ω
- Difficult to estimate the contribution of resonance since relative strong phase is unknown
- $\Lambda_c^+ \to p\phi(\to \mu\mu)$ for normalization of BF

- BDT to exclude combinatorial background using kinematics, topology of daughters, track and vertex isolation
- Mis-ID background due to $\Lambda_c^+ \to p\pi\pi$ with shape parameters estimated from MC

- Full Run 2 data set 5.6 fb^{-1}
- Analysis in bins of $m(\mu^+\mu^-)$:

Phys. Rev. D 110, 052007

Non-resonant region fits and results Signal and Mis-ID PDFs parameters estimated from MC and fixed in real data

15 H

idates / (5.6 MeV/c^2

$$N_{sig} = 1 \pm 5$$
 N_{sig}
 0.3σ $2.8c$

Data

Total fit

Signal model: Crystal Ball function, Mis-ID background Crystal Ball + Gaussian, Combinatorial: Exponential

Phys. Rev. D 110, 052007

Resonant region fits and results

Phys. Rev. D 110, 052007

Results

- No observation in the non-resonant region
- The following upper limits are set:

 $BF(\Lambda_c \to p\mu\mu) < 2.9 \ (3.2) \times 10^{-8} \text{ at } 90\%, (95\%) \text{ CL High+Low}$ $BF(\Lambda_c \to p\mu\mu) < 3.0 \ (3.3) \times 10^{-8} \text{ at } 90\%, (95\%) \text{ CL High}$ $BF(\Lambda_c \to p\mu\mu) < 0.93 \ (1.1) \times 10^{-8} \text{ at } 90\%, (95\%) \text{ CL Low}$ $BF(\Lambda_c \rightarrow p\mu\mu) < 7.3 \ (8.2) \times 10^{-8}$ at 90 %, (95%) CL extrapolated to the full phase space In the resonant regions observation in ϕ, ω, ρ regions

- Resulting branching fractions:

 $BF(\Lambda_c \rightarrow p\omega) = (9.82 \pm 1.23 (\text{stat.}))$ $BF(\Lambda_c \rightarrow p\rho) = (1.52 \pm 0.34(\text{stat.}) \pm 0.14(\text{syst.}) \pm 0.24(\text{ext.}))$ $BF(\Lambda_c \to p\eta) = (1.67 \pm 0.69(\text{stat.}) \pm 0.23(\text{syst.}) \pm 0.34(\text{ext.})) \times 10^{-3}$

Phys. Rev. D 110, 052007

$$) \pm 0.73(\text{syst.}) \pm 2.79(\text{ext.})) \times 10^{-4}$$

 $) \pm 0.14(\text{syst.}) \pm 0.24(\text{ext.})) \times 10^{-3}$

Mixing and CPV

F. Zenesini - Università di Bologna

Charm: Rare, CPV, Mixing

13

Mixing of $D^0 - \overline{D}^0$ mesons formalism

• Time evolution can be described with effective hamiltonian

$$i\frac{\partial}{\partial t}\begin{pmatrix} M^{0}(t)\\ \overline{M}^{0}(t) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M & M_{12}\\ M_{12}^{*} & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12}\\ \Gamma_{12}^{*} & \Gamma \end{pmatrix} \end{bmatrix} \begin{pmatrix} M^{0}(t)\\ \overline{M}^{0}(t) \end{pmatrix}$$

• Mixing parameters defined as

$$x_{12} \equiv \frac{2|M_{12}|}{\Gamma} \simeq \frac{\Delta m}{\Gamma} , \ y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma} \simeq \frac{\Delta \Gamma}{\Gamma}$$

- CP violation in mixing governed by the absorptive and dispersive phase $\phi_{2}^{M} \sim \arg(M_{12}), \ \phi_{2}^{\Gamma} \sim \arg(\Gamma_{12})$
- No evidence of CP violation with the current statistical precision
- Global best fit from HFLAV

$$x_{12} = (0.407 \pm 0.044)\% \qquad \phi_2^M = (0.407 \pm 0.024)\% \qquad \phi_2^M = (0.407 \pm 0.024)\% \qquad \phi_2^\Gamma = (0.401 \pm 0$$

 $18 \pm 0.92)^{\circ}$ $(0^{+1.55}_{-1.54})^{\circ}$

Charm: Rare, CPV, Mixing

14

Measurement of $D^0 - \overline{D}^0$ mixing and search for CP violation with $D^0 \to K^+ \pi^-$ decays

- D^0 mesons tagged from $D^{*+} \to D^0 \pi_s^+$ strong decay, i.e. with the sign of the slow pion
- Final states of interest: Wrong sign (WS) $D^0 \to K^+\pi^-$ and Right sign (RS) $D^0 \to K^-\pi^+$

Goal to measure the time-dependent ratio of WS/RS

$$R_{K\pi}^+(t) = \frac{\Gamma\left(D^0(t) \to K^+\pi^-\right)}{\Gamma\left(\overline{D}^0(t) \to K^+\pi^-\right)} \text{ and } R_{K\pi}^-(t) = \frac{\Gamma\left(\overline{D}^0(t) \to K^-\pi^+\right)}{\Gamma\left(D^0(t) \to K^-\pi^+\right)}$$

Observables and goals

• Decay time dependence of WS/RS ratio in unit of D^0 lifetime can be expressed as

$$R_{K\pi}^{\pm}(t) \simeq R_{K\pi} \left(1 \pm A_{K\pi}\right) + \sqrt{R_{K\pi} \left(1 \pm A_{K\pi}\right)} \left(c_{K\pi} \pm \Delta c_{K\pi}\right) t + \left(c_{K\pi}' \pm \Delta c_{K\pi}'\right) t^2$$

Observables:

Mixing:

$$- c_{K\pi} \approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^{M} \sin \Delta_f$$
$$- c'_{K\pi} \approx \frac{y_{12}^2 + x_{12}^2}{4}$$
CP-even

CPV:

-
$$A_{K\pi} \approx a_{DCS}^d$$

- $\Delta c_{K\pi} \simeq x_{12} \sin \phi_f^M \cos \Delta_f - y_{12} \sin \phi_f^\Gamma \sin \Delta_f$
- $\Delta c'_{K\pi} \approx \frac{1}{2} x_{12} y_{12} \sin(\phi_f^M - \phi_f^\Gamma)$ CP-odd

- χ^2 fit to sum and difference of measured ratio of WS/RS to extract the observables
- More sensitive on linear coefficient rather than quadratic ones

decay CPV Phys. Rev. D 103, 053008 mixing CPV JHEP 03 (2022) 162 interference CPV

16

Experimental Strategy

2407.18001

- Full Run 2, $6fb^{-1}$
- Sample divided by data taking period, in bins of t and D^0 final states
- Simultaneous binned fit to WS and RS to $m(D^0\pi)$ invariant mass distribution
- Similar fit for $D^0 \to KK$

Challenges

- Misassociation of tracks downstream of the magnet with upstream tracks turns RS soft pions in WS ghost soft pion that peaks in the mass distribution \rightarrow pure ghost sample used as proxy to model the background
- Bias due to B produced $D^{*+} \rightarrow 2D$ template fit of t vs $IP(D^0)$ to estimate residual bias
- $D^0 \rightarrow KK$ decay employed to cancel instrumental asymmetries

Charm: Rare, CPV, Mixing

Results

- Uncertainties on observables statistically dominated and improved with respect to previous analysis of a factor 1.6
- First evidence for quadratic term $c'_{K\pi} \neq 0$ at 3.5σ
- All CPV observables compatible with 0: no evidence of CPV in mixing, decay or interference

Parameters		Correlations [%]]
		$R_{_{K\pi}}$	$c_{_{K\pi}}$	$c'_{_{K\pi}}$	$A_{_{K\pi}}$	Δc
$R_{_{K\pi}}$	$(342.7 \pm 1.9) \times 10^{-5}$	100.0	-92.7	80.3	0.9	_
$c_{_{K\pi}}$	$(52.8 \pm 3.3) \times 10^{-4}$		100.0	-94.2	-1.3	
$c'_{_{K\pi}}$	$(12.0 \pm 3.5) \times 10^{-6}$			100.0	0.7	
$A_{K\pi}^{\pi}$	$(-6.6 \pm 5.7) \times 10^{-3}$				100.0	-9
$\Delta c_{\kappa\pi}$	$(2.0 \pm 3.4) \times 10^{-4}$					10
$\Delta c'_{_{K\pi}}$	$(-0.7 \pm 3.6) \times 10^{-6}$					

Run1+2 combination

2407.18001

Search for charge-parity violation in semileptonically tagged $D^0 \rightarrow K^+ \pi^-$ decays

- double tag with soft pion and muon
- Similar final state of interest as in the prompt sample and similar approach to the analysis
- respect to the prompt analysis
- Different parametrization of time-dependent ratio of WS/RS with respect to the prompt analysis

$$R^{\pm} = R_D^{\pm} + \sqrt{R_D^{\pm}} y^{'\pm} \left(\frac{t}{\tau_{D^0}}\right) + \frac{(x^{'\pm})^2 + (y^{'\pm})^2}{4} \left(\frac{t}{\tau_{D^0}}\right)^2$$

With $x^{'\pm}$, $y^{'\pm}$ defined as

$$\begin{pmatrix} x^{'\pm} \\ y^{'\pm} \end{pmatrix} = |q/p|^{\pm 1} \begin{pmatrix} \cos[\delta \pm \phi] & \sin[\delta \pm \phi] \\ -\sin[\delta \pm \phi] & \cos[\delta \pm \phi] \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• D^0 mesons tagged from $D^{*+} \to D^0 \pi_s^+$ strong decay with D^{*+} produced in $\overline{B} \to D^{*+} \mu^- X$ decays, i.e.

• Much purer sample, different systematic uncertainties and more sensitivity to lower decay times with

LHCb-PAPER-2024-044 (in preparation)

Dataset and fits

- Run 2 dataset 5.6 fb^{-1}
- Analysis in bins of t in units of D^0 lifetime with similar statistics
- Main background coming from double Mis-ID RS decays contaminating WS sample
- Estimated empirically swapping the mass hypothesis in WS decays and with RS MC samples
- Signal modeled with a Johnson function and three Guassians

LHCb-PAPER-2024-044 (in preparation)

LHCb-PAPER-2024-044 (in preparation) Results of the full parametrized fit with CPV allowed Results

- Full parametrized fit to the ratio of WS/RS is performed along with different hypothesis on no direct CPV or no CPV in any combination
- Statistically dominated measurement and improvement on systematic uncertainties
- All results compatible with CP symmetry
- Work on-going to report the result with the same parameterizations as prompt analysis

Charm: Rare, CPV, Mixing

Measurement of CP violation observables in $D^+ \rightarrow K^- K^+ \pi^+$ decays

- Model independent search with the largest branching fraction Cabibbo suppressed decay
- Strong phases can vary across the Dalitz plot \rightarrow possible enhancement of local asymmetries
- Full Run 2 dataset 5.4 fb^{-1}
- Local CP asymmetry parametrized as

$$\Delta A_{CP}^{i} = A_{raw}^{i,S} - A_{raw}^{i,C} - \Delta A_{raw}^{globa}$$

$$\Delta A_{raw}^{global} = \frac{\sum_{i}^{N_{bins}} \frac{A_{raw}^{i,S} - A_{raw}^{i,C}}{\sigma_{A_{raw}^{i,S}}^{2} + \sigma_{A_{raw}^{i,C}}^{2}}}{\sum_{i}^{N_{bins}} \frac{1}{\sigma_{A_{raw}^{i,S}}^{2} + \sigma_{A_{raw}^{i,C}}^{2}}}$$

$$\Delta A_{CP}^{i} = A_{raw}^{i,S} - A_{raw}^{i,C} - \Delta A_{raw}^{globa}$$

$$\Delta A_{raw}^{global} = \frac{\sum_{i}^{N_{bins}} \frac{A_{raw}^{i,S} - A_{raw}^{i,C}}{\sigma_{A_{raw}}^{2} + \sigma_{A_{raw}}^{2}}}{\sum_{i}^{N_{bins}} \frac{1}{\sigma_{A_{raw}}^{2} + \sigma_{A_{raw}}^{2}}}$$

 ΔA_{raw}^{global} accounts for difference in production asymmetries between D^+ and D_s^+

• To eliminate instrumental asymmetries Cabibbo favored decay $D_s^+ \to K^- K^+ \pi^+$ with the same final state

• Same transition of $D^0 \to K^- K^+$ where no CPV has been found that led to $> 3\sigma$ effect on $D^0 \to \pi^- \pi^+$ Phys. Rev. Lett. 131, 091802

2404.01414

Binning of Dalitz plot

• Hypothesis of no local CP violation tested with

$$\chi^{2}(\mathcal{S}_{\Delta_{CP}}) = \sum_{i}^{N_{bins}} (\mathcal{S}_{\Delta_{CP}}^{i})^{2} \text{ with } \mathcal{S}_{\Delta_{CP}}^{i} =$$

- For $D^+ \to K^{*0}K^+$ and $D^+ \to \phi \pi^+$ the CP asymmetry is expected to change sign crossing the resonance vertically and horizontally
- Around these resonances CP asymmetry is measured as

$$A_{CP|S} = \frac{1}{2} \left[\left(\Delta A_{raw}^{\text{top-left}} + \Delta A_{raw}^{\text{bottom-right}} \right) - \left(\Delta A_{raw}^{\text{top-right}} + \Delta A_{raw}^{\text{bottom-left}} \right) \right]$$

$$\Delta A^i_{CP} \ \sigma^2_{\Delta A^i_{CP}}$$

2404.01414

Charm: Rare, CPV, Mixing

 $s(K^{-}\pi^{+})$ [GeV²]

Results

- No localized CP violation in $D^+ \to K^- K^+ \pi^+$ found $\chi^2/n_{d.o.f.} = 31.8/2$
- Measurement of CP asymmetries around resonances compatible with hypothesis of CP symmetry \bullet

$$A_{CP|S}^{\phi\pi^{+}} = \left(0.95 \pm 0.43\right)$$
$$A_{CP|S}^{K^{*0}K^{+}} = \left(-0.26 \pm 0.3\right)$$

On-going effort from LHCb to also search for CP violation in $D^+ \rightarrow \pi^- \pi^+ \pi^+$ \bullet

$$22 \rightarrow p$$
-value = 8.1%

 $-3_{(stat)} \pm 0.26_{(syst)} \times 10^{-3}$ $.56_{(stat)} \pm 0.18_{(syst)} \times 10^{-3}$

2404.01414

Recent Results at Belle

Search for CPV in $D^+_{(s)} \to K^0_s K^- \pi^+ \pi^+$ decays 2409.15777

F. Zenesini - Università di Bologna

Analysis Strategy

- Model independent search with full Belle+BelleII dataset
- Analysis performed with 6 different kinematic observables
- Measure $a_{CP} = \frac{1}{2}(A_X \overline{A}_X)$ with A_X asymmetry in kinematic observable X
- a_{CP} unaffected by production and reconstruction asymmetry
- Divide the sample in regions of *X*

$$N(D_{(s)}^{+}, X > 0) = \frac{N^{+}}{2}(1 + A_{X}) \quad N(D_{(s)}^{+}, X < 0) = \frac{N^{+}}{2}(1 - A_{X})$$

$$N(D_{(s)}^{-}, \overline{X} > 0) = \frac{N^{-}}{2}(1 + A_{X} - 2a_{CP}) \quad N(D_{(s)}^{-}, \overline{X} < 0) = \frac{N^{-}}{2}(1 - A_{X} + 2a_{CP})$$
c observables: $C_{TP}, C_{QP}, C_{TP} \cdot C_{QP}, \cos \theta_{K_{S}^{0}} \cdot \cos \theta_{K^{-}}, C_{TP} \cdot \cos \theta_{K_{S}^{0}} \cdot \cos \theta_{K^{-}}$ and

Kinematio $C_{QP} \cdot \cos \theta_{K_S^0} \cdot \cos \theta_{K^-}$ $C_{TP} = \left(\vec{p}_{K^-} \times \vec{p}_{\pi_h^+}\right) \cdot \vec{p}_{K_S^0}$

2409.1577'

$$C_{QP} = \left(\vec{p}_{K^-} \times \vec{p}_{\pi_h^+}\right) \cdot \left(\vec{p}_{K_S^0} \times \vec{p}_{\pi_l^+}\right)$$

Results

- No evidence of direct CP violation \bullet
- Measurement among world's best precision results in this decay

		$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	
	X	\mathcal{A}_{CP}^X Belle	$\mathcal{A}_{C\!P}^X$ Belle II	Combined \mathcal{A}_{CP}^X	Significance
D^+	C_{TP}	$-4.0\pm5.9\pm3.0$	$-0.2\pm7.0\pm1.8$	$-2.3\pm4.5\pm1.5$	0.5σ
	$C_{ m QP}$	$-1.0\pm5.9\pm2.5$	$-0.4\pm7.0\pm2.4$	$-0.7\pm4.5\pm1.7$	0.2σ
	$C_{ m TP}C_{ m QP}$	$+6.4\pm5.9\pm2.2$	$+0.6\pm7.0\pm1.3$	$+3.9\pm4.5\pm1.1$	0.8σ
	$\cos heta_{K^0_S}\cos heta_{K^-}$	$-4.7\pm5.9\pm3.0$	$-0.6\pm6.9\pm3.0$	$-2.9\pm4.5\pm2.1$	0.6σ
	$C_{ ext{TP}} \cos heta_{K^0_{ extsf{s}}} \cos heta_{K^-}$	$+1.9\pm5.9\pm2.0$	$-0.2\pm7.0\pm1.9$	$+1.0\pm4.5\pm1.4$	0.2σ
	$C_{ m QP}\cos heta_{K^0_S}\cos heta_{K^-}$	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
D_s^+	C_{TP}	$-0.3\pm3.1\pm1.3$	$+1.0\pm3.9\pm1.1$	$+0.2\pm2.4\pm0.8$	0.1σ
	$C_{ m QP}$	$+0.6\pm3.1\pm1.2$	$+2.0\pm3.9\pm1.4$	$+1.1\pm2.4\pm0.9$	0.4σ
	$C_{ m TP}C_{ m QP}$	$+1.5\pm3.2\pm1.4$	$-2.7\pm3.9\pm1.7$	$-0.2\pm2.5\pm1.1$	0.1σ
	$\cos heta_{K^0_S}\cos heta_{K^-}$	$-3.7\pm3.1\pm1.1$	$-6.3\pm3.9\pm1.2$	$-4.7\pm2.4\pm0.8$	1.8σ
	$C_{ ext{TP}} \cos heta_{K^0_S} \cos heta_{K^-}$	$-4.4\pm3.2\pm1.4$	$+0.8\pm3.9\pm1.4$	$-2.2\pm2.5\pm1.0$	0.8σ
	$C_{ m QP}\cos heta_{K^0_S}\cos heta_{K^-}$	$-1.6\pm3.1\pm1.3$	$-0.0\pm3.9\pm1.7$	$-1.0\pm2.4\pm1.0$	0.4σ

2409.15777

Charm: Rare, CPV, Mixing

PIC2024

27

Conclusions and Outlooks

- Charm physics is a unique probe for new physics
- Many new measurement in the charm physics field with many different observables
- No evidence of CP violation in analyses presented today
- Increasing precision on many charm physics parameters

- Great prospects from LHCb with Run 3 dataset, larger than Run1+2
- New precision measurement will be possible
- Record luminosity of > 9.5 fb⁻¹

Thank you for your attention

F. Zenesini - Università di Bologna

Charm: Rare, CPV, Mixing

29