

Scattering and Neutrino Detector at the LHC

Cristóvão Vilela

43rd International Symposium on Physics in Collision NCSR "Demokritos", Athens, Greece October 25, 2024

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

on behalf of the FASER and SND@LHC Collaborations

Neutrinos at the Large Hadron Collider

- Initial studies on neutrino detection at the LHC date back to the 80s.
 CERN-1984-010-V-2.571; Nucl. Phys. B405, 80; LPNHE-93-03
 - Back then, seen as an opportunity to discover the v_{τ} .
 - Also to search for new particles. Phys.Lett.B 153 (1985) 183
- Large flux of neutrinos in the forward region.
- Very high neutrino energy $(\sigma_v \propto E_v)$.

 \Rightarrow A small-scale LHC experiment can observe neutrinos of all **three types** .

- Highest energy human-made neutrinos!
- Two neutrino experiments in operation at the ATLAS interaction point since June 2022:
 SND@LHC and FASER v

Hadron collider neutrino physics

CERN TH seminar

Quantum chromodynamics

Kinematics of a 100 TeV FCC

Implications for FCC-pp

Much of the *FCC-pp* physics will be produced at very *small*

Х.

Even electroweak and Higgs measurements will be Ο

Implications for astroparticle physics

- The *prompt* flux of atmospheric neutrinos, originating from charm decays, is not known.
 - This is an important component in the *transition region* between *atmospheric* and *astrophysical* neutrino flux.
- LHC neutrinos originating from *charm* hadrons with rapidities > ~ 7 correspond to atmospheric neutrino energies up to 10^7 GeV, in the *transition region*.

Lepton flavour universality

D meson

Neutrinos in SND@LHC acceptance

Flavour

- Detection of all three types of neutrinos allows for tests of lepton flavour universality .
 - Charm parentage leads to partial cancelation of flux uncertainties

 $^{
u_e}
u_\mu
u$

 $e^{-\mu^{- au}}$

U

 $u_e \nu_\mu \nu_ au$

 W^+

Neutrino interactions

Beyond the Standard Model

Beyond the Standard Model

Search for **new**, feebly interacting, **particles decaying** within the detector or scattering off the target.

+ scattering signatures

ForwArd Search ExpeRiment

Scattering and Neutrino Detector at the LHC

Veto system

9.5 λ_{in},

2 (2022 – 2023) / 3 (2024 -) 1 cm thick scintillator planes.

Off-axis: 7.2 < n < 8.4 Enhances the flux with charm origin.

Neutrino identification with emulsions

- Micrometric resolution of emulsion detectors allows for excellent neutrino identification
 - **Essential** for the identification of the **secondary vertex** associated to v_{τ}
- However:
 - **No timing** information (emulsions integrate ~months of data).
 - Limited ability to identify **muon tracks** .
 - Limited ability to measure hadronic showers .
- Must be complemented with **electronic detector data** .

Neutrino event reconstruction strategies

SND@LHC

hadronic shower

- Use **scintillating fibre** hit pattern to **match** electronic detector events to emulsion detector vertices.
- Measure **showers** with **ECal** and **HCal**.
- Tag muon tracks with the **muon system** .

FASER

- Use **interface tracker** to **match** electronic detector events to emulsion detector vertices.
- Measure track momenta with spectrometer.
- **Muon tagging** based on absence of hadronic interactions in the tungsten and track momentum.

Neutrino rate predictions

Phys. Rev. D 104, 113008

For 150 fb⁻¹

15

- Uncertainty on v_{μ} flux at the order of 10 20%.
- Larger uncertainties for other flavours.
- Models validated with forward data, e.g., LHCf.
- Very active development. -

Generators		$FASER\nu$			SND@LHC		
light hadrons	heavy hadrons	$ u_e + ar u_e $	$ u_{\mu}+ar{ u}_{\mu}$	$ u_ au+ar u_ au$	$ u_e + \bar{\nu}_e $	$ u_{\mu}+ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$
SIBYLL	SIBYLL	901	4783	14.7	134	790	7.6
DPMJET	DPMJET	3457	7088	97	395	1034	18.6
EPOSLHC	Pythia8 (Hard)	1513	5905	34.2	267	1123	11.5
QGSJET	Pythia8 (Soft)	970	5351	16.1	185	1015	7.2
Combin	ation (all)	1710^{+1746}_{-809}	5782^{+1306}_{-998}	$40.5^{+56.6}_{-25.8}$	245^{+149}_{-111}	$991\substack{+132 \\ -200}$	$11.3^{+7.3}_{-4.0}$
Combination (w/o DPMJET)		1128^{+385}_{-227}	$5346\substack{+558 \\ -563}$	$21.6^{+12.5}_{-6.9}$	195^{+71}_{-61}	$976\substack{+146 \\ -185}$	$8.8^{+2.7}_{-1.5}$

Two complementary LHC v experiments

	SND@LHC	FASER		
Location	Off-axis : 7.2 < η < 8.4 Enhances charm parentage	On-axis : $\eta > 9.2$ Enhances statistics		
Target	800 kg of tungsten	1100 kg of tungsten		
Detector technology	Emulsion vertex detector , electromagnetic and hadronic calorimeters	Emulsion vertex detector and spectrometer		

Scattering and Neutrino Detector at the LHC

SND@LHC Data

- 68.6 fb⁻¹ of proton-proton collisions recorded by the electronic detectors in 2022-2023
 - 97% detector uptime
 - Five emulsion target replacements
 - Keep track density $< 4x10^5$ tracks/cm²
 - Limit the exposure to 20 fb⁻¹
- Unexpected increase in the muon flux in **2024**
 - New strategy for the emulsion target replacement:
 - Instrument only the lower half target with emulsions.
 - Exposure limited to 12 fb⁻¹
 - Keep 65% of events.
 - 118.2 fb⁻¹ of proton-proton collisions recorded by the electronic detectors in 2024.
 - Nine emulsion target replacements performed, two periods with passive target.

Hadron calorimeter test beam

- Very successful hadron test beam data taking campaign in August 2023.
- Exact replica of the hadron calorimeter.
- Downsized mockup of the target.
 - Narrow beam spot.
- Calibrated calorimeter response.
 - Confirmed expected performance.
- New: electron test beam campaign ended last week!

20

Muon flux measurement

Eur. Phys. J. C (2024) 84: 90

- Backgrounds to neutrino signals in SND@LHC are mainly due to muon interactions in the tunnel walls.
- Precise measurements of the muon flux allow for validating and constraining our background model.

Measurements with the SciFi tracker, downstream muon system and emulsion detectors give consistent results.

Search for v_{μ} events in SND@LHC

Phys. Rev. Lett. 131, 031802

Fiducial volume

- Neutral vertex 3rd or 4th wall.
- Reject side-entering backgrounds.
- Signal acceptance: 7.5%

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex.
- Signal selection efficiency: 36%

Number of v CC events expected in 36.8 fb ⁻¹ after cuts: 4.2

SND@LHC backgrounds

Phys. Rev. Lett. 131, 031802

Entering muons

- Incoming muon track may be missed due to detector inefficiency.
- Shower induced by DIS or EM activity.
- Number of muons in acceptance: 5 x 10⁸ SNDLHC-NOTE-2023-001
- Detector inefficiency: 5 x 10⁻¹²
 - Two veto and two scintillating fibre planes.
- **Negligible** background with tight fiducial volume.

:= within SND@LHC acceptance

Neutral hadrons

- Neutral hadrons are produced in muon DIS in materials upstream of the detector.
- Muon from pion decay-in-flight or charm production.
- Expect a total of (8.6 ± 3.8) x 10 ⁻² background events due to neutral hadrons.

SND@LHC neutrino observation

Phys. Rev. Lett. 131, 031802

2023

Muon neutrino analysis update

New this year

Updated analysis with 2023 data and extended fiducial volume.

Event selection

Fiducial volume

- Reject events in first wall.
 - \circ Previously used only walls 3 and 4.
- Reject side-entering backgrounds.
- Signal acceptance: 18%
 - Up from 7.5%.

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex.
- Signal selection efficiency: 35%

Updated muon neutrino results

Number of events expected in 68.6 fb⁻¹

- Signal: 19.1±4.1
- Neutral hadrons: 0.25 ± 0.06

Number of events observed: 32

25

Search for shower-like (0μ) neutrino events

Signal: $v_{\rm e}$ CC and NC interactions

Fiducial volume

- No hits in the veto detector.
- Reject side-entering backgrounds.
- Signal acceptance: 12%

0μ neutrino event identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- No hits in last two muon system planes.
 - No reconstructable muon.
- Density-weighted number of hits in most active station > $11x10^3$.
 - Optimized for maximum expected significance
- Signal selection efficiency: 42%

Observation of 0µ events in SND@LHC

Neutral hadron background

- Define background-dominated control region.
- Scale the background prediction to the number of observed events in the control region.
 - Observed neutral hadron background is ¼ of the predicted value.
- Events expected in signal region : 0.01 Neutrino background
 - Muon neutrino CC interactions are the dominant background, with **0.12** expected events.
- Tau neutrino CC1 μ interactions expected: 0.002 **O\mu observation significance**
 - Total expected background: 0.13 ± 0.11 events
 - Expected signal: 4.7 events
 - Expected significance: 4.9 σ

Number of events observed: 6

Observation significance: 5.8 σ

0μ neutrino candidates

Search for v_{e} CC interactions in the emulsion data

Strategy

- Identify regions of high track density in the emulsions.
- Consistent with the expectation of electromagnetic shower development.
- Search for neutral vertices associated to identified showers.

Status

- Electromagnetic shower patterns identified.
- Vertex association ongoing.

Detector upgrades in 2024

Veto detector upgrade

- Installed a 3rd plane veto plane in the detector.
 - Additional redundancy to mitigate the impact of detector inefficiency.
- Floor was excavated so that veto system could be lowered.
 - Better coverage of the target.
- This upgrade will allow for a significant increase of the fiducial volume used in neutrino data analyses.

New muon telescope

- Technology demonstrator: sealed resistive-plate chambers.
- Will allow for measuring the muon flux outside of the SND@LHC acceptance.
 - Further validation of the background model.

Anna Sfyrla LHC seminar 15/10/24

FASER Data

- Recorded 98% of delivered lumi
- Dead-time of < 3 %
- Tiny data loss due to specific operational issues
- Two-shifter operational model
 - One run manager / week
 - One monitoring shifter / week
 - No control room all remote, counting on automated alarms & mattermost

Results use various chuncks of data depending on availability / conditions

Phys. Rev. Lett. 131, 031801

- Event in time with collision and good data quality.
- No signal (< 40 pC) in the two front veto scintillators.
- Signals (> 40 pC) in all the scintillators downstream of the decay volume.
- Exactly one good fiducial track:
 - p > 100 GeV/c
 - \circ r < 120 mm at the front veto

Number of v CC events expected in 35.4 fb ⁻¹ after cuts: 151 ± 41

34

FASER backgrounds

Entering muons

- Incoming muon track missed due to detector inefficiency.
- Expect $(3.7 \pm 2.5) \times 10^{-7}$ events.
 - Estimated from events with only one scintillator plane firing.

Scattered muons

- Muon scattered in the target misses the veto planes.
- Expect 0.08 ± 1.83 events.
 - Estimated from control sample.

Neutral hadron interaction

- Neutral hadrons produced in muon DIS in materials upstream of the detector.
- Expect O(300) hadrons with E > 100 GeV.
 - Most are absorbed in the target.
- Expect **0.11 ± 0.06** events.

Phys. Rev. Lett. 131, 031801

FASER neutrino observation

Observed 153 neutrino event candidates with a statistical significance >> 5 σ

2023

Search for neutrinos in FASERv

Main background: neutral hadrons interacting with detector. Also some NC interactions for v_{μ} . Estimate from simulation and validate it using lower energy vertices

$ν_e$ CC 0.025 ^{+0.015} -0.010 1.1-3.3 $ν_\mu$ CC 0.22 ^{+0.09} -0.07 6.5-12.4		Expected background	Expected signal
$\nu_{\mu} CC = 0.22^{+0.09} -0.07 = 6.5-12.4$	ν_e CC	0.025 ^{+0.015} -0.010	1.1-3.3
	ν_{μ} CC	0.22 ^{+0.09} -0.07	6.5-12.4

Anna Sfyrla LHC seminar 15/10/24

Electron neutrino event selection

~2.4 x 10^4 tracks / cm² / fb⁻¹ 10 fb⁻¹ integrated

FASERv results

Phys. Rev. Lett. 133, 021802

Anna Sfyrla LHC seminar 15/10/24

Anna Sfyrla LHC seminar 15/10/24

CALONU

- Increased muon background in 2024 made it impractical to install FASERv emulsion for most of the year
- In order to try to keep some sensitivity to electron neutrinos decided to install spare calorimeter modules in FASERv box for period when emulsion not installed
- Can potentially allow for electronic detector neutrino physics
- Detector replaced by FASERv box for last part of 2024 data-taking

Beyond Run 3

AdvSND CERN-LHCC-2024-007 CERN-LHCC-2024-014 Magnetic Calorimeter Silicon strip detector. Neutrino target: Finer sampling, tungsten. Ο Neutrino Target Calorimeter / muon detector: Coarser sampling, magnetized iron. Synergy with detector development for the SHiP experiment. Approved this year: NA67. Ο AdvSND Simulation Event: 4

SND@LHC Run 4 upgrade: AdvSND

Anna Sfyrla LHC seminar 15/10/24

FASERV IN RUN 4

- High muon rate due to higher luminosity might lead to too frequent FASERv replacements
 - No concrete FASERv plans yet for Run 4
- Still: interesting neutrino physics expected with electronic detector
- Explorations for minimal detector additions ongoing

CERN-LHCC-2023-009

Neutrino flux measurement

- ightarrow Indirect constraints to forward production of hadrons
- \rightarrow Probes QCD in novel kinematic regimes
- ightarrow Broad implications even in astroparticle physics
- ightarrow Still limited stats in Run 4 FASER

Dedicated Forward Physics Facility proposed to host future far forward experiments at the LHC.

Summary

- Neutrinos produced in proton-proton collisions have been observed for the first time!
 - Neutrino measurements by two complementary experiments: **FASER** and **SND@LHC**.
- This marks the start of an exciting new era of **neutrino** measurements at the **LHC**.
 - Rich physics program spanning **neutrino interactions**, **QCD**, **flavour** and **BSM** searches.
- Neutrino and forward physics programme proposed for the **HL-LHC**.
 - **Detector upgrades** needed to deal with high rates.

