High Statistics B Decays

Story of two players...

LHCb: a general-purpose spectrometer in the forward direction at the LHC, optimized for precision flavor physics

Belle II: second-generation e⁺e⁻ flavor factory operating near the Y(4S) resonance

In their kitty, they have got

- Integrated luminosity: 9 fb⁻¹ of pp collisions (+ pPb, PbPb, fixed target mode) until 2024
- Recorded $\sim 8 \text{ fb}^{-1}$ in 2024 alone!

- Roughly, 1 fb⁻¹ of LHCb corresponds to 1 ab⁻¹ of Belle II
- Constraints Belle II has advantage for final states with neutrals (γ , π^0) and missing particles (ν ...)

- Peak luminosity: $4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - > World record ($\sim \times 2$ of KEKB)
 - Aiming an order higher
- Integrated luminosity: 530 fb^{-1}
 - Similar to BABAR data set and half of what Belle recorded in 11 years
 - Target: 50 ab^{-1}

Their main goals

- 1) Precision test of the standard model (SM): measure the angles and sides of CKM Unitarity Triangle
- 2) Indirect searches for beyondthe-SM (BSM) physics mostly in loop dominated decays

See the talk by C. Kar

and $\gamma \equiv \phi_3$ exists

They do much more

 \leftarrow LHCb has access to all kinds of heavy hadrons: B^0 , B^+ , B_s^0 , B_c^+ , Λ_b ...

Checking an SM candle: γ/ϕ_3

- The CKM angle γ can be measured directly by exploiting the interference between tree-level $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$ transition amplitudes involving the exchange of a single W boson
 - > Theoretically clean with uncertainty $\mathcal{O}(10^{-7})$ JHEP 01 (2014) 051

• Deviations between its direct measurements and indirect determinations from the global CKM fits would be a clear indication of BSM physics

Checking an SM candle: γ/ϕ_3

Combination of measurements of the angle γ as well as of mixing and CP violation in the charm sector, including nine new measurements published by LHCb during 2023–2024

Most precise determination from direct measurements to date

Checking an SM candle: γ/ϕ_3

Combine measurements based on data (771 fb⁻¹) from Belle with those based on data (up to 362 fb⁻¹) from Belle II

B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]
$B^+ \to Dh^+$	$D \to K_{\rm s}^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \to Dh^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to Dh^+$	$D \to K_{\rm s}^0 K^- \pi^+$	GLS	711 + 362
$B^+ \to Dh^+$	$D \to K_{\rm s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
$B^+ \to Dh^+$	$D \to K^0_{\rm S} \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D \to K^0_{\rm s}\pi^0, K^0_{\rm s}\phi, K^0_{\rm s}\omega, K^-K^+, \pi^-\pi^+$	GLW	210+0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D\gamma, D \to K^0_{\rm s}\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0

 4 methods: GLW (CP eigenstates), ADS (doubly Cabibbo suppressed modes), GLS (Cabibbo suppressed modes), and BPGGSZ aka Dalitz

$$\phi_3 = (75.2 \pm 7.6)^\circ$$

Improved determination of $\sin 2\beta$

- Flagship measurements from first-generation e⁺e⁻ flavor factories (Belle and BABAR) confirmed the Kobayashi-Maskawa theory for CP violation
- LHCb performed the measurement in $B^0 \rightarrow \psi[J/\psi, \psi(2S)]K_S^0$ decays

 $\sin 2\beta = 0.717 \pm 0.013(\text{stat}) \pm 0.008(\text{syst})$

 \leftarrow Most precise single measurement of sin 2β to date

What about the angle ϕ_2 ?

- Challenging measurement of $B^0 \rightarrow \rho^+ \rho^-$ ۲
 - \blacktriangleright P \rightarrow VV decay (requires angular analysis)
 - Two soft neutral pions from ρ mesons \succ
 - Large continuum and $B\overline{B}$ backgrounds

Experiment	\$	С	$N_{B\overline{B}}$
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02\pm0.12^{+0.06}_{-0.05}$	388×10^{6}
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$	772×10^{6}
BABAR	$-0.17\pm0.20^{+0.05}_{-0.06}$	$0.01 \pm 0.15 \pm 0.06$	384×10^{6}

 \checkmark Agree with previous e^+e^- experiments (will be difficult for LHCb)

Paper in preparation

Belle II preliminary

 $\mathcal{L} dt = 364 \text{ fb}^{-1}$

100

80

Belle II

 B^0 tag

What about the angle ϕ_2 ?

• Inclusion of the Belle II $B^0 \rightarrow \rho^+ \rho^-$ result yields 6% improvement in the world average

$$\phi_2 = \left(92.6^{+4.5}_{-4.8}\right)^{\circ}$$

From CKM angles to anomalies

• Two types: first one in decays mediated by the flavor-changing neutral current $b \rightarrow s\ell^+\ell^-$ transition

- Tensions of 2-3 standard deviations (σ) in branching fractions and angular distributions ⇒ remember the famous p₅'
 - Potential long-distance contributions weaken these tensions
- Lepton flavor universality (LFU) violation in the R(K*, K) ratios died off around 2022 Christmas
 ➢ Details in PRD 108 (2022) 032002

There is another one \rightarrow

R(D^(*)): subject of great interest

• Measure the LFU ratio:

- Sensitive to BSM contribution, e.g., leptoquark
- First *R*(*D*^{*}) Belle II result (189 fb⁻¹) based on the hadronic *B* tagging method

R(D^(*)): subject of great interest

- Sensitive to BSM contribution, e.g., leptoquark
- First $R(D^*)$ Belle II result (189 fb⁻¹) based on the hadronic *B* tagging method

arXiv:2401.02840

$$R(D^*) = 0.262 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.035}{_{-0.032}}(\text{syst})$$

- Control sample statistics is the main source of systematic uncertainty
 - Comparable statistical precision as Belle with only ¼ the data due to the use of a new *B* tagging algorithm and an optimized selection

- At one point, I was bit unsure if LHCb could really do this measurement involving multiple neutrinos...
- Reconstruct the final state in all cases by combining $D^+ \rightarrow K^- \pi^+ \pi^+$ with $\tau^- \rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$
- Fit to four-momentum transfer squared, muon energy in *B* rest frame & missing mass squared

 $R(D^+) = 0.249 \pm 0.043 \text{ (stat.)} \pm 0.047 \text{ (syst.)}$

 $R(D^{*+}) = 0.402 \pm 0.081 \text{ (stat.)} \pm 0.085 \text{ (syst.)}$

0.4 R(D*) 68% CL contours LHCB-PAPER-2024-007 0.35 Phys. Rev. Lett. 131 (2023) 111802 0.3 0.25 Phys. Rev. D108 (2023) 012018 LHCb Average 0.2 $R(D) = 0.339 \pm 0.052_{total}$ $R(D^*) = 0.272 \pm 0.019_{total}$ HFLAV SM Prediction $R(D) = 0.298 \pm 0.004$ $\rho = -0.29$ $R(D^*) = 0.254 \pm 0.005$ $\dot{P}(\chi^2) = 21\%$ 0.2 0.3 0.5 0.4 R(D)

 \sim Compatible with SM at the level of 0.78 σ

A related observable: R(X)

• Using Run 1 data (189 fb⁻¹) Belle II measured the inclusive LFU ratio:

$$R(H_{\tau/l}) = \frac{\mathscr{B}(B \to H\tau\nu_{\tau})}{\mathscr{B}(B \to Hl\nu_{l})}$$

- Exploit the hadronic tagging method
- Use missing mass squared and B_{sig} momentum to extract the signal

Key challenge: accurate modeling of backgrounds

Their templates calibrated with control samples and sidebands

A related observable: R(X)

Combined

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

• Result agrees with the prediction $R(X)_{SM} = 0.223 \pm 0.005$ JHEP 11 (2022) 007

Above plot tells us that the result is also consistent with world averages of $R(D^{(*)})$

What future holds for Belle II?

SuperKEKB/Belle II status and plans

- Run 2 is expected to be long (may be end 2028 or later)
 - Steady integration at a peak luminosity of ~2×10³⁵ cm⁻²s⁻¹ for several ab⁻¹ data
 - After Run 2, go for upgrade to reach the design luminosity (6×10³⁵cm⁻²s⁻¹) and accumulate tens of ab⁻¹

What about LHCb upgrade?

- Phase-I upgrade during LS2 for Run 3+4
 - ➢ Full software trigger and read out all detectors at 40 MHz
 - Replace vertex and tracking detectors as well as PID system; consolidate PID, tracking and ECAL during LS3

> Target for $\mathcal{L}_{peak} \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and $\mathcal{L}_{int} > 50 \text{ fb}^{-1}$ by end of Run 4

- Phase-II upgrade during LS4 beyond Run 4 (for 300 fb⁻¹)
 - > New detector technologies and timing towards $\mathcal{L}_{peak} \sim 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Summary

- □ Focus on some of the recent analyses from Belle II and LHCb related to the Unitarity Triangle and LFU test
- Number of interesting studies that I have been unable to cover in this talk can be accessed from the Belle II and LHCb publication pages:
 - https://www.belle2.org/research/physics/publications https://lbfence.cern.ch/alcm/public/analysis
- □ Much more to come from these flavor frontier experiments
- ➢ Stay tuned ...

