Physics at LHC - Perugia, June 6-11th 2011

ATLAS New Heavy Quark Searches

Why searching for extra generations of fermions?

 Because the number of generation is not fixed by the SM

A 4th generation (E,N,U4,D4) could have major implications...

Since the discovery of neutrino oscillations, very massive neutrinos could exist!

• $N_{\nu}=3$ with $m_{\nu} < m_{Z}/2$ (LEP) $\Rightarrow m_{\nu_4} > m_Z/2$

 $m_H > 114 \text{ GeV is imposed}$

 $\sqrt{s} = 10 \text{ TeV}, \text{LHC}$

 $\sqrt{s} = 7$ TeV, LHC

 $\sqrt{s} = 1.96$ TeV, Tevatron

heavy quark mass [GeV]

• observed masses of fermions in the first 3 families could arise from small perturbations to a flavor-blind 4x4 mass matrix (Democratic Mass Matrix) [4] • could be the reason for only 4 families and small v masses

... in understanding the fermion mass hierarchy:

... in understanding EW symmetry breaking:

 4G fermion condensate can play the role of the Higgs via some strong interactions [5,10] • If fermions propagate in 5D AdS space, K-K excitations of gauge bosons interacting with 4G fermions give rise to Yukawa couplings and to the mass hierarchy [6]

• 4G might help in bringing the SU(3)xSU(2)xU(1) couplings close to a unification point at scale ~10¹⁶ GeV in the simplest non-SUSY grand unification model SU(5) [7]

Because it can allow a heavy Higgs:

Current EW fit [3] in disagreement with LEP lower limit of 114 GeV: $m_H = 80^{+30}_{-23} \,\text{GeV}$

4th generation is the simplest extension of the SM and its existence would modify profoundly our understanding of the Universe

... even if only 1 extra generation is allowed [2]

Figure 4: Exclusion plot on the plane N_g , m_N for fixed values $m_U = m_D = 300$ GeV, $m_E = 200$ GeV. χ^2 minimum is shown by the star. The condition

Because it is not excluded

by the EW precision data...

How to detect new heavy quarks with ATLAS?

This will depend on:

Quark masses

Mixing with lighter generations

Assuming unitarity of a 4x4 CKM matrix, quark mixing of 4G to the other 3 is constrained to be small from fit to flavor-physics data [12]:

 $|\tilde{V}_{ub'}| < 0.06$, $|\tilde{V}_{cb'}| < 0.027$, and $|\tilde{V}_{tb'}| < 0.31$ at 3σ

It has been recently pointed out [13,9] that if mixing angles are tiny ($\sim 10^{-13} < \Theta_{ht'} < \sim 10^{-8}$) and $m_{U4} \sim m_{D4}$, heavy quarks could have a proper lifetime of 10⁻¹⁰s < t_Q < 1s ! →Their decay length could range from:

1- few millimeters → Potential displaced vertices close to the interaction point

1- By looking at top-like decays ...

Most discriminating variables are:

•H_T: ~ scalar sum of all transverse energy in the event

→ Could even decay outside ATLAS (so-called 'stable' particles)

2- to many meters!

D4 searches:

Dilepton: lyggb lyggb half-time same-charge! Lepton+jets: lvqqb qqqqb All-hadronic: qqqqb qqqqb

Top-like+2W: WWb WWb

→ Could provide 10¹³ to 10¹⁵ more CP

Violation to solve the Baryon Asymmetry

of the Universe problem [8,9]!

→ Dark Matter candidates:

new fermions could be cold DM

hadrons from stable U4,N could be

composite warm DM candidates, and explain

results of the Integral experiment [10]

... or top-like + 2 W!

Assuming B.R. $D4 \rightarrow t+W = 100\%$

Top-like l+jets Top-like dilepton true same sign lepton

Signal samples

General **U4** searches:

Q4Q4 production rate is much

higher than @Tevatron [11]

Large p of W daughters → ~collinear decay products

Boosted tops Main background is ttbar production

The idea is to apply cinematic cuts and use variables reflecting the higher pt spectra of decay products

Di-lepton channel: both $Ws \rightarrow I+v$, assuming B.R. $U4 \rightarrow q=u,d,c,s,b+W=100\%$ $\sigma_{approx}^{NNLO}[pb]$ Background samples Process

3.5 single top Wt ZZ 1.0 850 $Z \rightarrow ee$ A 2D cut (H_T , M_{coll}) is applied to discriminate S from B:

• M_{collinear}: invariant mass of a neutrino and its nearby lepton

Q₄ Mass [GeV] Total BG

With 37pb⁻¹, ATLAS already excluded at 95% C.L. a heavy quark with mass below 270 GeV in this channel [14]

Lepton+jets channel:

WWqq > Ivq qqq

has more statistics allows to reconstruct the mass of the hypothetic quarks!

Assuming BR Q4→b+W = 100% b-jets identification allows to kill almost all QCD background

2- With unique experimental signatures!

Very massive long-lived particles could: • be 'slow-moving' (~0.3<β<1) (a) deposit anomalous large ionization energy (b) → Can be seen by *time-of-flight* from the **tile** calorimeter, and charge deposits from the pixel (ToT) and TRT detectors (HT) could even look like 'dashed lines' in the detector! (charged → neutral → charged...) protons

Similar to stable hadronizing squarks ATLAS searches [16]:

ATLAS Mass reconstructed from p and βγ measurements: $m=p/\beta\gamma$

> These results need to be reinterpreted in the framework of 4th generation

What are the best mass limits?

Theoretical upper limits come mostly from tree level unitarity [9]

Experimental limits on short lived particles:

+++++++

CDF excluded at 95% C.L.:

 $M_{Collinear}$ before and after the triangle cut for the 250 GeV mass

•a D4 quark below 372 GeV with 4.8 fb⁻¹ from D4→ tW [17] •a U4 quark below 335 GeV with 4.6 fb⁻¹ from U4→qW [18]

Assuming an optimistic 100% B.R. in their channel (otherwise limits are less stringent)

→ ATLAS will be competitive with Tevatron with 2011 data

FIG. 1: The m_D vs m_U contour plot for varying fourth-generation lepton masses. The purple region is the allowed mass region from the S-T constraint at 95% C.L. for $m_h = 130$ GeV and the blue region (including the purple region) is that for $m_h = 300$ GeV.

What are the discovery prospects?

Discovery potential has been studied since the ATLAS TDR [19]: ATLAS TDR $pp \rightarrow t\bar{t}$ 14 TeV, 100/fb ATLAS TDR

Pixels

- the upper limits on heavy quark masses - its high production rate, even at 7TeV

ATLAS has the potential to discover or fully exclude 4th generation!

References

[1] CERN-PH-EP-2005-041 [2] V.A. Novikov et al., arXiv:0904.4570v1(2009) [3] Particle Data Group, J. Phys. G 37, 075021 (2010)

[4] S. Sultansoy, arXiv:hep-ph/0610279v1 (2007)

[5] B. Holdom, JHEP 0608 (2006) 076

[6] G.Burdman et al., JHEP 0712(2007)086

[7] P.H.Frampton et al., arXiv:9903387v2 (1999)

[8] W.S. Hou, Chin. J. Phys. 47 (2009) 134

[9] H. Murayama *et al.*, arXiv:1012:0338v1 (2010)

[10] B. Holdom *et al.*, arXiv:0904.4698v2 (2009)

[11] Comput.Phys.Commun.182:1034-1046 (2011) [12] A. Kumar et al., Phys. Rew. D 83, 073008 (2011)

[13] P.Q. Hung, Phys. Rew. D 77, 037302 (2008)

[14] ATLAS-CONF-2011-022[†], [15] ATLAS-CONF-2011-016[†]

[16] CERN-PH-EP-2011-026[†], [†]ATLAS Collaboration

[17] Phys.Rev.Lett.106:141803 (2011), CDF Collaboration

[18] CDF Note 10110 (2010), CDF Collaboration [19] ATLAS Technical Design Report CERN/LHCC/99-14/15 (1999)