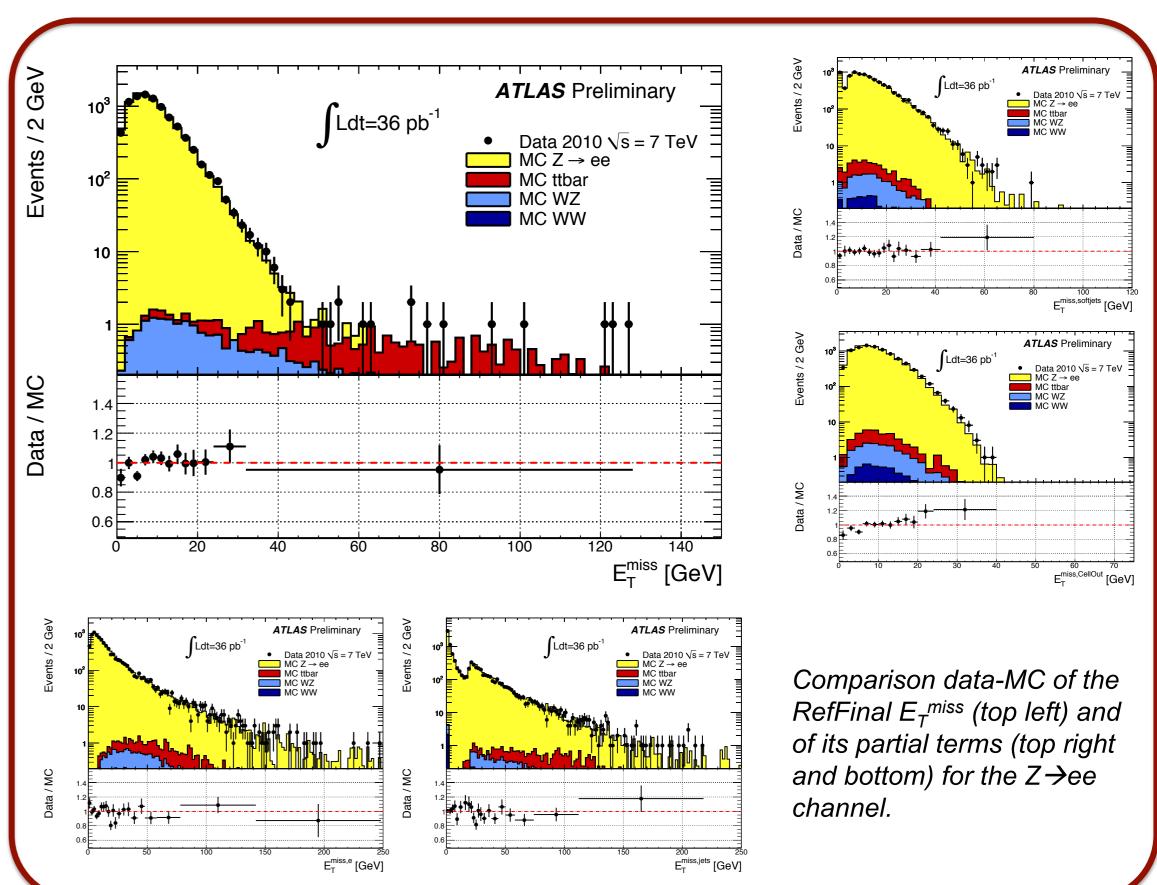

PLHC POSTER SESSION – PERUGIA, JUNE 2011 **Refined reconstruction and calibration of the** missing transverse energy in the ATLAS detector

Intruduction: E_T^{miss} motivation

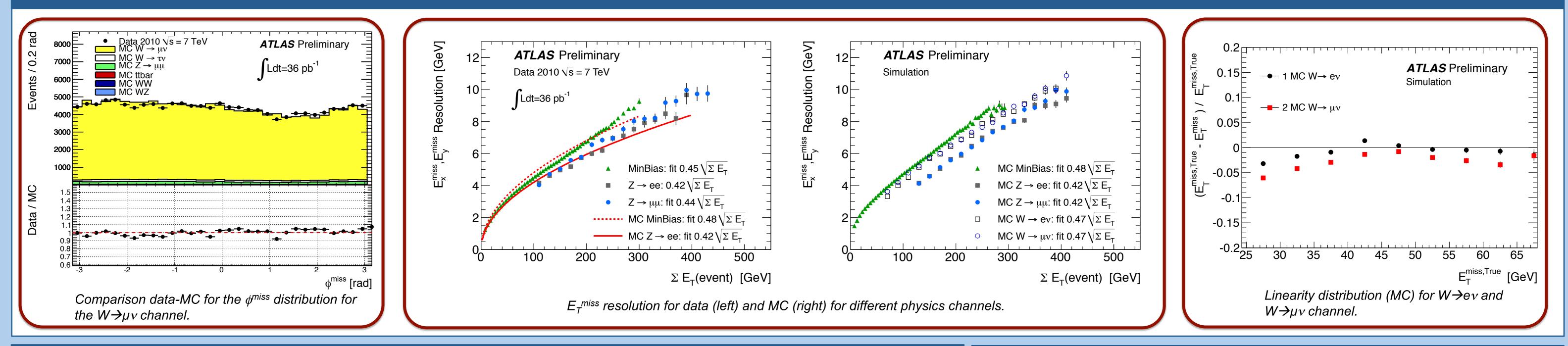
The missing transverse energy (E_T^{miss}) signals the presence of either weakly interacting particles or particles missing detection or any problem in the detector. So, an optimal E_{T}^{miss} evaluation, including the setting of its absolute scale, is crucial for the study of many physics channels in the Standard Model as W, tt, H $\rightarrow \tau \tau$ or of discovery channels for SUSY and extra dimensions.


E_T^{miss} definition

is a complex event quantity, It is calculated adding all significant signals from all detectors:

- Calorimeters signals
- Muon signals
- Tracks in region where the Calorimeter and the Muon Spectrometer are inefficient

Main results with 2010 data


Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

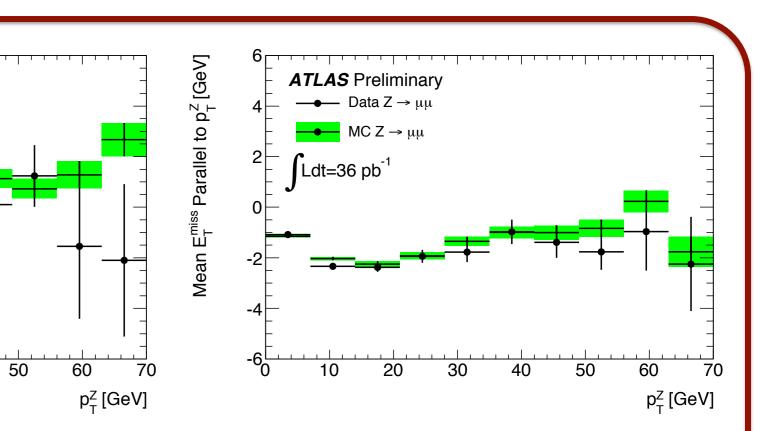
 E_{T}^{miss} is obtained by asking for energy conservation in the transverse (x-y) plane:

f Sum of energy of all particles $E_{x,y}^{miss} = -\sum E_{x,y} - \sum E_{x,y}$ seen in the detector

$$E_T^{miss} = \sqrt{(E_x^{miss})^2 + (E_y^{miss})^2} \qquad \phi^{miss} = \arctan(E_y^{miss} / E_x^{miss})$$

Main results with 2010 data

RefFinal algorithm


The E_T^{miss} is calculated from cells in topoclusters and from muons. TopoCluster cells are calibrated on the basis of the reconstructed physics object they belong to. The algorithm is very flexible and allows one to use the best calibration from each object. TopoClusters SoftJets Muons Photons Jets Electrons Taus not in objects Go back to constituent Calorimeter Topoclusters \rightarrow Cells \rightarrow apply overlap removal at Cell level ATLAS Preliminar \rightarrow Cell calibration weights dependent on the object \rightarrow add them to calculate partial terms \longrightarrow Data Z \rightarrow ee \longrightarrow MC Z \rightarrow ee Ldt=36 pb MET_RefEle + MET_Refγ + MET_RefTau + MET_RefJet + MET_SoftJets + MET_RefMuon MET CellOut MET_RefFinal MET Muon + + The Local Hadron Calibration (LCW) classifies calorimeter clusters as hadronic or electromagnetic, $\vec{E}_{T}^{miss,calo} + \vec{E}_{T}^{miss,muon} = \vec{E}_{T}^{miss}$ according to cluster topology. Then, it weights each cell in clusters according to cluster properties.

Main results with 2010 data

In Z events, the longitudinal axis can be

	ObjectElectronsPhotonsTausSoft jetsJetsMuonsTopoclusters outside objects	Selection/Algo"robustMediumWithTrack""Tight""Tight"anti- k_t R=0.6anti- k_t R=0.6"Staco combined and Mutag"	$p_{\rm T}$ three levels of the	GeV GeV GeV	Calibrationdefault electron calibrationEM scaleLCWLCW+JESLCW+Tracks	Configuration giving the best performance	The refined E _T ^{miss} makes use of systematic uncertainty can be calcu- each high p _T reconstructed objects SoftJets and CellOut terms. CellOut Systematic und => Effect on Ref SoftJets Systematic un => Effect on Ref	ulated from the uncertainty on s and from the uncertainty on certainty ~ 13.2% fFinal <1%
	 Dopoclusters are groups of calorimeter cells topologically connected seed cells with E_{cell} > 4σ_{noise} expand in 3D: add neighbours with E_{cell} >2σ_{noise} merge clusters with common neighbours add perimeter cells with E_{cell} >0σ_{noise} 			 Algorithm for TopoClusters not in objects (CellOut term) are improved using reconstructed tracks: add tracks which do not reach the calorimeter or do not seed a topocluster when a track is associated to a topocuster the track momentum is used instead of the topocluster energy. 			 Conclusion MC describes data well No large tails are observed Good resolution The calibration for low energy 	
							contributions entering in the E _T ^{miss} computation has to be further improved	events in ATLAS Proton-Proton Collisions at $\sqrt{s}=7$ TeV, ATLAS- CONF-2011-080

defined as the flight direction of the Z boson. Along this axis no Et^{miss} is expected, because the Z is balanced by Longitudinal axis the hadronic recoil. A negative bias for low values of p_T^Z is seen, probably due to underestimation of the hadronic recoil.

Hadronic recoil

Perpendicular

Mean value of the E_{τ}^{miss} parallel to the Z direction as a function of P_{τ}^{Z} for $Z \rightarrow ee$ channel (left) and $Z \rightarrow \mu \mu$ channel (right)

Systematic Uncertainty

Rosa Simoniello¹, on behalf of the ATLAS Collaboration Contact: rosa.simoniello@mi.infn.it 1) Università degli Studi di Milano & INFN

