

Measurement of the production cross section for Z/γ* in association with jets in pp collisions at √s = 7 TeV with the ATLAS Detector

Insitut de Física d'Altes **Energies (Barcelona)**

Physics at LHC 2011, Perugia, Italy June 6-11th Estel Perez Codina, on behalf of the ATLAS Collaboration

Introduction

The measurement of Z+jets cross section provides a stringent test of pQCD. The MC predictions of Z+jets processes need to be tuned and validated at the unexplored LHC energy domain using data. Z+jets final states are irreducible background for new physics.

Results are presented using the full 2010 dataset corresponding to an integrated luminosity of 33 pb⁻¹. Events are selected with a Z/γ^* candidate decaying into electrons or muons.

The ATLAS Detector

a 2T solenoidal magnetic field

Event Selection

Trigger on single lepton

		-
Electron	Muon	Jet
E _T >20 GeV	p _T >20 GeV	p _T >30 GeV
η <2.47 (1.37-1.52 excl)	η <2.4	$ \eta $ <2.8 Δ R(jet,lep)>0.5
2 opposite signed leptons 66 <m(ii)<116 gev<="" td=""><td></td></m(ii)<116>		

Electrons are reconstructed as EM clusters with a matching ID track. Muon candidates require an ID track segment combined with a track in the Muon Spectrometer.

Anti-Kt jet algorithm with R=0.4 is used to reconstruct jets from 3-D topological clusters.

Jet Reconstruction

Jet p₊ is corrected using MC-based calibration. Jet energy scale is the dominant systematic uncertainty: 10-20% in the cross-section measurement.

Background

Background contamination is estimated using MC except for dijet background in electron channel, which is estimated using a template fit on orthogonally selected data.

Differential cross-section

$$\frac{d\sigma^{hadr}}{d\alpha} = \frac{N_{data}^{det} - Bg^{det}}{f} \cdot U_{MC}^{det \to hadr}(\alpha)$$

Bin-by-bin unfolding based on Alpgen MC samples.

NLO pQCD predictions

Computed with MCFM, CTEQ6.6 PDFs, and renormalization and factorization scale $\mu = H_{+}/2$ ($H_{+} \equiv \text{scalar sum } p_{+}$ of all particles). Include non perturbative corrections of the order of 4%. Systematics derived from PDFs, α_s (M₂) and μ uncertainties are included.

Systematics

Main systematic uncertainties from Jet Energy Scale, lepton reconstruction and unfolding. Total uncertainty between 13 -24% in the number of jets and between 15%-25% in the jet P_.

Results

Measured cross sections are well described by NLO pQCD predictions (+ non perturvative corrections) and by LO+parton shower predictions from ALPGEN and SHERPA.

the integrated luminosity.