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In the future circular electron-positron collider “FCC-ee”, the

intensity of colliding bunches must be tightly controlled, assf
with a maximum charge imbalance between collision a4l
partner bunches of less than 3—-5%. Laser Compton back e |
scattering could be used to adjust and fine-tune the bunch

intensity.

dipole magnet

Ti:sapphire laser pulse

E=1J, A=800 nm

Sketch of the Compton collision
inside a single 10 m long dipole.
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Figure 3: Surviving fraction of the initial particle bunch of & =
106 particles for different laser spot size. The dashed line & 1.2
indicates the results for the / operation mode, whereas the 1o
: ~ solid line is for tracking with @parameters. '
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Figure 4: Single-bunch loss map after 500 turns with laser
interaction for the Z operation mode and a laser spot size of
100 um. Aperture losses in normal conducting magnets are
shown in red, and losses on superconducting magnets are
shown in blue.
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s shown in the luminosiy Eq. (1), the number of scattered
particles is inversely proportional o the ransverse spot sizes of the.
collided bunches. Therelore, we should identiy a positon with a.
smal lcton sot iz and fous e ase at ht it o

wimum scattering effciency.

based on the laser parameter mentioned above, the initial
conservative assumption was made that the bunch undergoes laser
interaction every 3rd turn, corresponding to a laser frequency of 1
kHz and assuming a pulse energy of 1
In Fig. 3, the fraction of surviving inital particles over the number of
tracked turs is presented. As expected, the rate with whic
particles are removed increases with decreasing laser spot size.
In Fig. 4, the distribution of the losses around the fing is shown as a
loss mapin . The loss map shown represents the binned energy of
particle losses on the aperture and collimators, normalised to the
bin size, which is m for losses on the aperture. The case
presented is for a single bunch at the - mode, tracked for 500 turns
with laser inter- action on and a 100 ym spot size (corresponding to
the blue dashed line in Fig. 3), where an intensity loss of around 12
9%is found. This represents the worst case scenario out of the 8
studied cases, both in terms of absolute energy loss and relative
Iosses on the aperture. For the current parameter set, the mode
has 10000 bunches with a bunch population of 2.43 x 1011 at 45.6
GeV, giving 1.8 kJ energy per bunch. The majority of the scattered
particles are absorbed by the betatron collimation system in PF; but
notable losses occur in the experimental insertions, where up to
around 1.1 Jim is observed at the dispersion peaks at the start of
the nserions. The egions 100 mfom the lsion pis, where
like the experiment d
superconducting inal foous quadrupoles are located, receive up (o
an integrated total of 0.35 J, corresponding 1o a power loss of 2.27
W. It should be noted that this is the power load per bunch only
during the intensity rimming, not a continuous power load during
operation. A full assessment of the risks from the loss power load
will be carried out in the future, when the specifications for the
required intensity trim and the number of bunches trimmed
are established
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In Fig. 5, the RMS emittance evolution for the tracking with the
Laser interaction every 3rd tum is compared with a reference
tracking without any Laser interaction. Itis found that for the
smallest spot size, the horizontal emittance increases by about 5%
after 500 turns compared to the reference case, both initalized with
emittances following Tab. 1. As expected, the emittance blow-up
decreases with increasing Laser spot size, with the largest spot size
0 um showing basically no increase in the horizontal emittance.
For the vertical plane, emittance spikes occur after particles
interacting with Laser pulse but before being lost and no reliable
conclusion on the emittance increase can be made at this point. It
should be noted that in these first tracking studies, synchrotron
radiation damping has been treated as an average energy loss in
element, rather than the discrete emission of photons with the
energy sampled from the spectrum of the synchrotron radiation
process. As such, the horizontal emittance of tracked distribution will
tend towards O rather than the equilibrium emitance. While more
time-consuming, future tracking aim to better study the emittance
evolution by modelling the emission of synchrotron radiation as a
stochastic fluctuation process. Moreover, coupling should be
introduced in the lattice to generate a nonzero vertical emittance.
Lastly, for the case of the , no emittance increase was found

-

Figure 3: Surviving fraction of the iniial particle bunch of 108
particles for different aser spot size. The dashed line
indicates the results for the ~ operation mode, whereas the
sold line i for tracking with parameters.

Figure 4: Single-bunch loss map after 500 turns with laser
interaction for the Z operation mode and a laser spot size of

m. Aperture losses in normal conducting magnets are
shown in red, and losses on superconducting magnets are
shown in blue.
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Figure 5: Emittance evolution of the particle bunch for different
laser spot size and for the Z operation mode.

List ToDo:
Improve IP inside banding magnet

Find optimum between reducing bunch
charge to exclude flip-flop instability an
emittance groving

Study possibility to optimise energy
distribution e e* using dispersion inside
bending magnet

Study possibility to reduce beam halo using
Donuts-shaped laser beam

Study polarisation of scattered photons for
diagnostic

Find application and users for 25 and 150
GeV photon beam %



Magnet correction circuits, J. Bauche, C. Eriksson, F. Saeidi
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Beam from xsuit z
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