

arXiv: [2405.08494](#page-20-0)

Pick

[Back up](#page-19-0)

Determination of CP-violating HZZ interaction with polarised beams at the ILC

Cheng Li¹, Gudrid Moortgat-Pick²

¹School of Science Sun Yat-sen University

²II. Institut für Theoretische Physik Universität Hamburg

ECFA ZH meeting, 18 June 2024

Motivation

arXiv: [2405.08494](#page-0-0)

Pick

- **1** The CP violation in HVV interaction can be a possible source of the baryogenesis
- 2 Achieving highest precision for determination the CP properties of HZZ coupling via Z decay at the future e^+e^- collider.
- 3 Polarised e^+e^- beams can be used to improve the sensitivity to the CP properties of HZZ coupling, by enhancing the cross-section or introducing additional observables

arXiv: [2405.08494](#page-0-0)

Pick

Theory [framework](#page-2-0)

[Back up](#page-19-0)

CP violation in Higgs to gauge bosons interaction

We only take the leading-order CP-odd terms into account

$$
\mathcal{L}_{\text{EFF}} = c_{\text{SM}} Z_{\mu} Z^{\mu} H - \frac{c_{HZZ}}{v} Z_{\mu\nu} Z^{\mu\nu} H - \frac{\tilde{c}_{HZZ}}{v} Z_{\mu\nu} \tilde{Z}^{\mu\nu} H \tag{1}
$$

At LHC: $H \rightarrow 4\ell$ measurement:

 QQ 3 / 21

(2)

Probing the CP violation at e^+e^- collider

arXiv: [2405.08494](#page-0-0)

G.Moortgat-

Theory [framework](#page-2-0)

CP

[Determination](#page-11-0) of CP

[Back up](#page-19-0)

Probe the CP-violation of HZZ at e^+e^- collider via Z decay from Higgs strahlung process or Z-fusion process

Higgs Strahlung

- **Unpolarised study at CEPC** [Q. Sha et al. 22']
- The effect of the initial polarized electrons is carried by the Z boson and transferred to the $\mu^+\mu^-$ pair by the Z decay

■ Z-fusion study at CLIC [I. Bozovic et al. 23']

 \blacksquare Z-fusion process cannot carry the spin information of initial transversely polarised beams, since the final state electron a[nd](#page-2-0) [po](#page-4-0)[si](#page-2-0)[tro](#page-3-0)[n](#page-4-0) [a](#page-1-0)[r](#page-2-0)[e](#page-5-0) [u](#page-6-0)[n](#page-1-0)[p](#page-2-0)[o](#page-5-0)[la](#page-6-0)[ris](#page-0-0)[ed](#page-20-0)

Initial beam polarisation and spin density matrix

Spin formalism [H. E. Haber, 94']

polarisation matix for the initial beams:

$$
\frac{1}{2}(1-\sigma \cdot P)_{\lambda\lambda'} = \frac{1}{2}\begin{pmatrix} 1-P^3 & P^1 - iP^2 \\ P^1 + iP^2 & 1+P^3 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} 1-f\cos\theta_P & f\sin\theta_P e^{-i\phi_P} \\ f\sin\theta_P e^{i\phi_P} & 1+f\cos\theta_P \end{pmatrix}
$$
(3)

Bouchiat-Michel formula:

$$
u(\rho,\lambda')\bar{u}(\rho,\lambda) = \frac{1}{2}(1+2\gamma_5)\dot{\rho}\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\cancel{1}^1\sigma_{\lambda\lambda'}^1 + \cancel{1}^2\sigma_{\lambda\lambda'}^2)\dot{\rho}
$$
(4)

$$
v(\rho,\lambda')\bar{v}(\rho,\lambda)=\frac{1}{2}(1-2\gamma_5)\dot{\rho}\delta_{\lambda\lambda'}+\frac{1}{2}\gamma_5(\beta_+^1\sigma_{\lambda\lambda'}^1+\beta_+^2\sigma_{\lambda\lambda'}^2)\dot{\rho}
$$
(5)

Spin density matrix for Higgs strahlung:

$$
\rho^{ii'}(e^+e^- \to ZH) = \frac{1}{2}(\delta_{\lambda_r\lambda'_r} + P^m_{-} \sigma^m_{\lambda_r\lambda'_r}) \frac{1}{2}(\delta_{\lambda_u\lambda'_u} + P^n_{+} \sigma^n_{\lambda_u\lambda'_u}) M^i_{\lambda_r\lambda_u} M^{*i'}_{\lambda'_r\lambda'_u}
$$

= $(1 - P^3_{-} P^3_{+}) A^{ii'} + (P^3_{-} - P^3_{+}) B^{ii'} + \sum_{mn}^{1,2} P^m_{-} P^n_{+} C^{ii'}_{mn}$ (6)

where C_{mn} is the part with transversely polarised beams.

Note that, one would not see any transverse polarisation effect when only one beams transversely polarised

arXiv: [2405.08494](#page-0-0)

Pick

Theory [framework](#page-2-0)

Amplitude and CP-violation contribution

arXiv: [2405.08494](#page-0-0)

Pick

Theory [framework](#page-2-0)

[Back up](#page-19-0)

In order to simplify the analysis and get the idea of CP-violation effect, we only consider the additional contribution from the CP-odd term \tilde{c}_{HZZ}

$$
|\mathcal{M}|^2 = |c_{\text{SM}}\mathcal{M}_{\text{SM}} + \tilde{c}_{\text{HZZ}}\widetilde{\mathcal{M}}_{\text{HZZ}}|^2
$$

= $|c_{\text{SM}}\mathcal{M}_{\text{SM}}|^2 + |c_{\text{SM}}\tilde{c}_{\text{HZZ}}\mathcal{M}_{\text{SM}}\widetilde{\mathcal{M}}_{\text{HZZ}}| + |\tilde{c}_{\text{HZZ}}\widetilde{\mathcal{M}}_{\text{HZZ}}|^2$ (7)

where

$$
c_{\rm SM} \propto \cos \xi_{CP}, \qquad \widetilde{c}_{HZZ} \propto \sin \xi_{CP} \tag{8}
$$

Concerning the beam polarisation

$$
|\mathcal{M}|^2 = (1 - P^2 - P^3 +)(\cos^2 \xi_{CP} \mathcal{A}_{CP-even} + \sin 2\xi_{CP} \mathcal{A}_{CP-odd} + \sin^2 \xi_{CP} \widetilde{\mathcal{A}}_{CP-even})
$$

+
$$
(P^2 - P^3 +)(\cos^2 \xi_{CP} \mathcal{B}_{CP-even} + \sin 2\xi_{CP} \mathcal{B}_{CP-odd} + \sin^2 \xi_{CP} \widetilde{\mathcal{B}}_{CP-even})
$$

+
$$
\sum_{mn} P^m_{-} P^n_{+} \left(\cos^2 \xi_{CP} C^m_{CP-even} + \sin 2\xi_{CP} C^m_{CP-odd} + \sin^2 \xi_{CP} \widetilde{C}^m_{CP-even} \right)
$$

(9)

Only the interference term is CP-odd, which yield the CP-violation via triple-product correlations

$$
\mathcal{A}_{\text{CP-odd}}, \mathcal{B}_{\text{CP-odd}} \propto \epsilon_{\mu\nu\alpha\beta} [p_{e^-}^{\mu} p_{e^+}^{\nu} p_{\mu^+}^{\alpha} p_{\mu^-}^{\beta}] \propto (\vec{p}_{\mu^+} \times \vec{p}_{\mu^-}) \cdot \vec{p}_{e^-}
$$
(10)

$$
\mathcal{C}_{\text{CP-odd}}^{mn} \propto \epsilon_{\mu\nu\rho\sigma} \left[(\rho_{e^-} + \rho_{e^+})^\mu \rho_{\mu^+}^\nu \rho_{\mu^-}^\rho s_{e^-}^\sigma \right] \propto (\vec{\rho}_{\mu^+} \times \vec{\rho}_{\mu^-}) \cdot \vec{s}_{e^-}
$$
 (11)

The idea [of](#page-4-0) us[i](#page-2-0)[ng](#page-5-0)transver[se](#page-1-0) polarisation to prob[e](#page-2-0) the CP pr[o](#page-0-0)perties of HZZ HZZ [c](#page-5-0)[ou](#page-6-0)[pl](#page-1-0)ing see [a](#page-5-0)[ls](#page-6-0)o [5. **KORK KERKER LER** Biswal et al. '09] QQ

6 / 21

arXiv: [2405.08494](#page-0-0)

Pick

CP [observables](#page-6-0)

CP-sensitive observables

Coordinate systems with unpolarised or longitudinal polarised beams

 H \rightarrow 2

The ϕ is the azimuthal angle difference between the $\mu^-\text{-}\mu^+$ plane and the Z-H plane

Coordinate systems with transversely polarised beams $(\vec{n_y} \propto \vec{s}_{e-}$, $\vec{n_x} \propto \vec{s}_{e-} \times \vec{p}_{e-}$, $\vec{n_z} \propto \vec{p}_{e-}$)

The ϕ_{μ^-} is the azimuthal angle [o](#page-5-0)f the μ^- - μ^+ plane with fixing the [y](#page-5-0)-a[xis](#page-7-0) o[rie](#page-6-0)[nt](#page-7-0)[a](#page-5-0)[ti](#page-6-0)[o](#page-10-0)[n](#page-11-0) [to](#page-5-0) $\vec{s_{\rm e}}$ –

Angular distribution

Monte Carlo simulation by Whizard¹

We fix the total cross-section to the SM tree-level cross-section, and use 100% transversely polarized beams

$$
\sigma_{\text{tot}} = \cos^2 \xi_{CP} \,\sigma_{\text{SM}} + \sin^2 \xi_{CP} \tilde{\kappa}_{HZZ}^2 \,\tilde{\sigma}_{\text{HZZ}} = \sigma_{\text{SM}},\tag{12}
$$

$$
P_{-}^{2} = P_{+}^{2} = 100\% \tag{13}
$$

The angular distribution of muon azimuthal angle is sensitive to the CP-violation 1 http://whizard.hepforge.org $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ 8 / 21

E

arXiv: [2405.08494](#page-0-0) Pick

CP [observables](#page-6-0)

Azimuthal asymmetry

arXiv: [2405.08494](#page-0-0)

Pick

CP [observables](#page-6-0)

Construct the observables sensitive to CP-violation:

$$
\mathcal{O}_{CP}^T \propto \cos \theta_H \sin 2\phi_{\mu^-}, \quad \mathcal{O}_{CP}^{\mathit{UL}} \propto \cos \theta_\mu \sin \phi \tag{14}
$$

We can define the following asymmetries:

$$
\mathcal{A}_{CP}^{\mathcal{T}} = \frac{N(\mathcal{O}_{CP}^{\mathcal{T}} < 0) - N(\mathcal{O}_{CP}^{\mathcal{T}} > 0)}{N_{\text{tot}}}
$$
\n
$$
\tag{15}
$$

$$
\mathcal{A}_{CP}^{UL} = \frac{N(\mathcal{O}_{CP}^{UL} < 0) - N(\mathcal{O}_{CP}^{UL} > 0)}{N_{\text{tot}}}
$$
(16)

Statistical uncertainty (based on binomial distribution) of the Asymmetry:

$$
\Delta \mathcal{A} = \sqrt{\frac{1 - \mathcal{A}^2}{N_{\text{tot}}}}
$$
\n(17)

 $A \sqcup A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A$ 重 QQ 9 / 21

Variation of CP-mixing angle

arXiv: [2405.08494](#page-0-0)

Pick

CP [observables](#page-6-0)

[Back up](#page-19-0)

We fix the total cross-section, and vary the CP-mixing angle ξ_{CP}

- This ${\cal A}^{\cal T}_{CP}$ is linearly depending on the CP-mixing angle sin 2 ξ_{CP}
- The stronger transverse polarisation leads to larger $\mathcal{A}_{C\!P}^{\mathcal{T}}.$ $\overline{}$
- For $(P_{e^-}^{\mathcal{T}}, P_{e^+}^{\mathcal{T}}) = (80\%, 30\%)$ and $L = 500$ $\rm fb^{-1}$, one cannot distinguish the CP-violating case from CP-conserving case for any CP-mixing angle ξ_{CP} with only using $\mathcal{A}_{CP}^{\mathcal{T}}$ observable.

Variation of CP-mixing angle

arXiv: [2405.08494](#page-0-0)

Pick

CP [observables](#page-6-0)

- The ${\cal A}_{CP}^{UL}$ linearly depends on the sin 2 ξ_{CP} as well, while the beams polarisation cannot change the $\mathcal{A}_{\textit{CP}}^{\textit{UL}}$.
- One can also simultaneously measure the $\mathcal{A}_{CP}^{\mathit{UL}}$ when initial beams are transversely polarised.

Determination of the CP-mixing angle

We made a linear fit for the asymmetries with respect to the sin $2\xi_{CP}$

arXiv: [2405.08494](#page-0-0)

Pick

[Determination](#page-11-0) of CP properties

[Back up](#page-19-0)

 $A_i = a \sin 2\xi_{CP} + b$ (18)

The fitting results for Monte-Carlo simulation data are basically match to the analytical calculation.

Determination of the CP-mixing angle

- arXiv: [2405.08494](#page-0-0)
- **Pick**
-
-
- [Determination](#page-11-0) of CP properties
-
- [Back up](#page-19-0)

 \blacksquare Simply combine the two asymmetries

$$
\chi_{\mathcal{A}_{CP}}^2 = (\frac{\mathcal{A}_{CP}^{\mathcal{T}}}{\Delta \mathcal{A}_{CP}^{\mathcal{T}}})^2 + (\frac{\mathcal{A}_{CP}^{UL}}{\Delta \mathcal{A}_{CP}^{UL}})^2 < 3.81\tag{19}
$$

* The systematic uncertainties can be cancelled out by the CP-odd asymmetry, since the background contribution is basically CP-even.

Variation of the CP-odd coupling

arXiv: [2405.08494](#page-0-0)

Pick

[Determination](#page-11-0) of CP properties

- The $\mathcal{A}_{CP}^{\mathcal{T}}$ can reach to maximal when $\widetilde{c}_{HZZ}\sim 0.35$, and asymmetry $\mathcal{A}_{CP}^{\mathcal{T}}$ would decrease for
much bigher $\widetilde{\epsilon}$ much higher \tilde{c}_{HZZ} .
- For $(P_{e^-}^{\mathcal{T}}, P_{e^+}^{\mathcal{T}}) = (80\%, 30\%)$ and $L = 500 \; \rm{fb}^{-1}$, one still cannot determine any CP-odd coupling \widetilde{c}_{HZZ} .

Determination of the CP-odd coupling

Monte Carlo simulation by Whizard

Pick

[Determination](#page-11-0) of CP properties

[Back up](#page-19-0)

We made the quadratic function fit for the signal regions with varying \tilde{c}_{HZZ}

$$
N_i = a\tilde{c}_{HZZ}^2 + b\tilde{c}_{HZZ} + c \tag{20}
$$

 $A \equiv \mathbf{1} \times \mathbf{1} + \mathbf{1} \$ \mathbb{B} QQ 15 / 21

Determination of the CP-odd coupling

arXiv: [2405.08494](#page-0-0)

Pick

[Determination](#page-11-0) of CP properties

■ One can combine the signal regions

$$
\chi_N^2 = \sum_i \left(\frac{(N(\mathcal{O}_i < 0) - N^{\text{SM}}(\mathcal{O}_i < 0))^2}{N(\mathcal{O}_i < 0)} + \frac{(N(\mathcal{O}_i > 0) - N^{\text{SM}}(\mathcal{O}_i > 0))^2}{N(\mathcal{O}_i > 0)} \right) \tag{21}
$$

* The explicit combined results can be obtained by the background simulation and log-likelihood estimation

Comparison

Determination of the CP-odd coupling

Pick

[Determination](#page-11-0) of CP properties

- The e^+e^- colliders can significantly improve the sensitivity to CP-odd HZZ coupling compared to the LHC or HL-LHC.
- \blacksquare The sensitivity with polarised beams is better than the analysis with unpolarised beams, where the center-of-mass energy and luminosity are similar.
- \blacksquare The Z-fusion process can have similar sensitivity but with much higher center-of-mass energy.

Summary

arXiv: [2405.08494](#page-0-0)

G.Moortgat-

[Summary](#page-17-0)

[Back up](#page-19-0)

Conclusions

- The e^+e^- collider can achieve high precision to CP properties of HZZ interaction.
- The initial transversely polarised beams introduce additional CP-odd observables, which can be combined and improve the sensitivity to CP-odd structure.
- The longitudinally polarised beams enhance the total cross-section and suppress the statistical uncertainty, which can improve the CP-odd structure sensitivity as well.
- Both transverse and longitudinal polarisation improve compared to unpolarised case, where the transverse polarisation offers more observables
- \blacksquare Z-fusion process cannot get benefit from transverse polarisation, while Z-fusion process analysis at higher center-of-mass energy can be a complementary study for HZZ CP properties.

arXiv: [2405.08494](#page-0-0)

G.Moortgat-Pick

[Determination](#page-11-0) of CP

[Summary](#page-17-0)

Thank you!

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B} + \mathbf{A} \equiv \mathbf{B}$ 目 299 19 / 21

Back up

arXiv: [2405.08494](#page-0-0)

Pick

[Back up](#page-19-0)

Matching conditions between different interpretations

$$
f_{CP}^{HZZ} = \frac{\Gamma_{H \to ZZ}^{CP-odd}}{\Gamma_{H \to ZZ}^{CP-even} + \Gamma_{H \to ZZ}^{CP-odd}},\tag{22}
$$

$$
\frac{\Gamma_{H\to ZZ}^{CP-odd}}{\Gamma_{H\to ZZ}^{CP-even}} \sim \frac{\sigma_3}{\sigma_{\rm SM}}[pp \to H \to 4\ell(13 \text{ TeV})] \sim 0.153. \tag{23}
$$

$$
\widetilde{c}_{HZZ} = \frac{g_1^2 + g_2^2}{4} \widetilde{c}_{ZZ} = \frac{m_Z^2}{v^2} \widetilde{c}_{ZZ}.
$$
 (24)

メロメメ 御 メメ きょくきょ \mathbb{B} 299 20 / 21

Back up

arXiv: [2405.08494](#page-0-0)

Pick

[Back up](#page-19-0)

MC fitting results (\sqrt{s} = 250 GeV)