# Higgs self-coupling sensitivity at the ILC Status and Recent Developments

ECFA meeting on e+e- to ZH angular measurements | 2024/06/18

Bryan Bliewert

Technical University of Munich (TUM) & Deutsches Elektronen-Synchrotron DESY

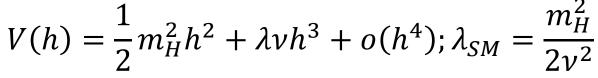


#### Agenda



#### Introduction

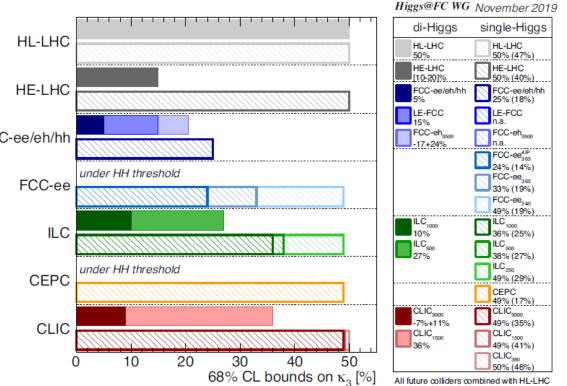
- Part I: State-of-the-art (SOTA) Analysis Tools
- Part II: Future Analysis Tools
- Conclusion



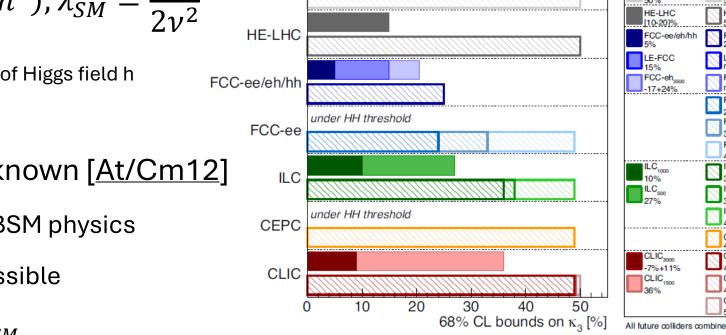

# Introduction

Physical fundamentals and methods for direct measurements of the Higgs self-coupling at future Higgs factories

#### The Higgs self-coupling $\lambda$ in the SM



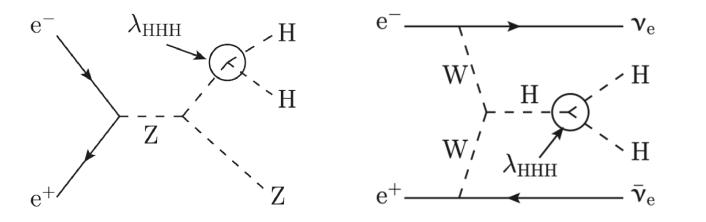


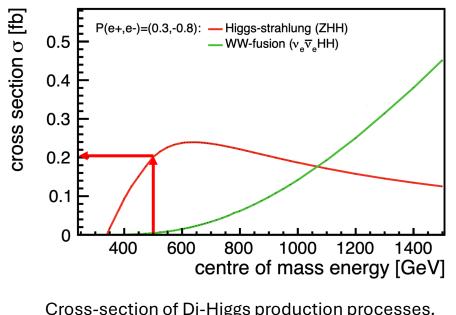


vacuum expectation value (vev) of Higgs field h v mass of Higgs boson  $m_H$ 

 $\succ$  in SM:  $\lambda_{SM}$  fixed since  $m_H$  is known [At/Cm12]

- deviation from  $\lambda = \lambda_{SM}$  hints at BSM physics
- beyond SM, many values are possible
- most projections assume  $\lambda = \lambda_{SM}$

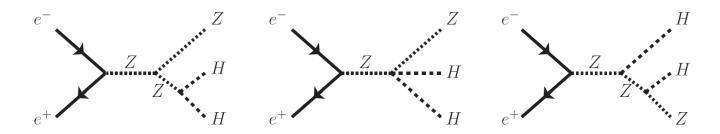



Projected sensitivity at 68% probability for  $k_3$ . From [Db20]




#### Measuring the Higgs self-coupling at e+e- colliders

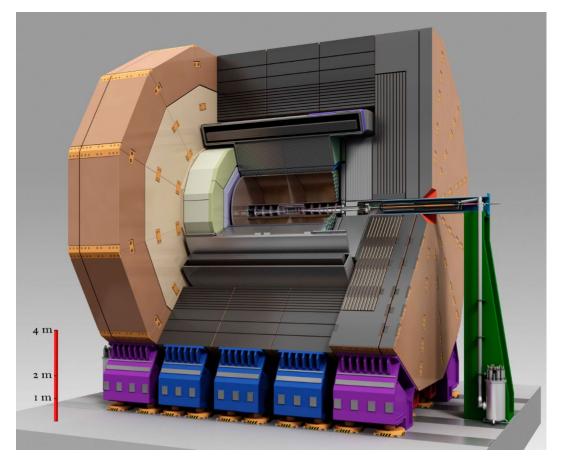



- Di-Higgs strahlung (**ZHH**; dominant < 1 TeV)
- vector boson fusion ( $v\bar{v}HH$ ; dominant > 1 TeV)





Cross-section of Di-Higgs production processes. From [Du16]


> degredation of sensitivity in ZHH by diagrams without  $\lambda$ 

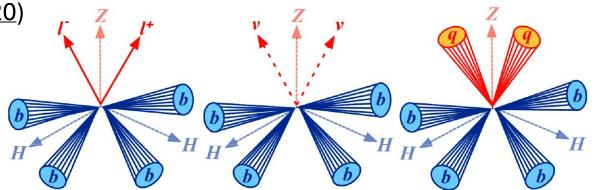


### **The International Large Detector (ILD)**



- > well charatecterized, highly granular detector concept [IDR]
- > designed around particle flow concept
  - allows reconstruction of individual physics objects (Particle Flow Objects, PFOs)
- Full Geant4-based simulation available
  - including links between truth/reconstructed particles




Rendering of the ILD detector. From [Ba19]

#### **The ZHH Analysis**



#### extensive projections at ILC500 (DESY-Thesis-16-027)

- based on ILD detector concept (DBD2013, IDR2020)
- 17 background and 3 signal channels considered
- multivariate (MVA) tools for multiple steps
   e.g. lepton and flavor tagging, background rejection etc.
- weight event counting by  $m_{HH}^2$ for further sensitivity enhancement



Lepton, neutrino and hadron channel of the signal process. From [Du16]

```
> precision reach after running 4ab^{-1} at 500 GeV (HH → b\overline{b}b\overline{b} + HH → b\overline{b}W^{\pm}W^{\mp})
```

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$ 

 $\Delta \lambda_{\rm SM} / \lambda_{\rm SM} = 26.6\%$ 

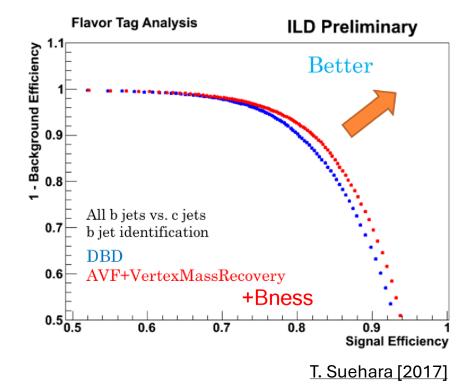
 $\Delta \lambda_{\rm SM}/\lambda_{\rm SM}~=10\%$  with additional upgrade to  $1~{
m TeV}$ 

#### **Bottlenecks in the ZHH analysis**



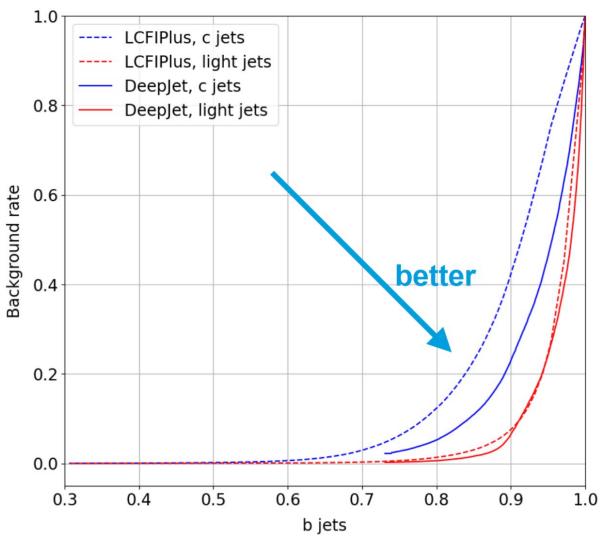
- > jet pairing and jet misclustering: "perfect" jet clustering → 40% improvement improve di-jet mass resolution
- removal of γγ overlay: 15% improvement expected important to tackle initial state radiation (ISR)
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as  $H \rightarrow b\bar{b}$  is the dominant Higgs decay channel
- > adding  $Z \rightarrow \tau \tau$  channel: 8% improvement expected include a yet unaccounted decay channel
- > tagging of isolated leptons improves reconstruction of Z bosons
- > separation of ZHH diagrams with/without the self-coupling would directly improve the sensitivity on  $\lambda$  (lower sensitivity factor)




# **Tools of Today**

State-of-the-art (SOTA) tools for reconstruction and analysis expected to improve the sensitivity on  $\lambda$ 

### **Flavor tagging with LCFIPlus**

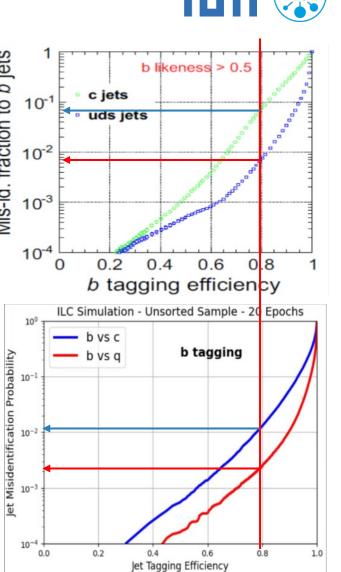



- improved b-tagging efficiency in current ILD standard <u>LCFIPlus</u> since SOTA projections from 2016
  - 5% relative improvement in  $\epsilon_{b-tag}$  at same purity
  - 11% expected improvement in  $\Delta \sigma_{ZHH} / \sigma_{ZHH}$



# Flavor tagging with ML (DeepJet)

- improved b-tagging efficiency since state-of-the-art projections from 2016
- ML models (<u>DeepJet</u>, <u>ParticleNet</u>, <u>ParT</u>) show highly improved rejection compared to LCFIPlus
- status: ready for use (in <u>MarlinML</u>)




Flavor tagging performance of LCFIPlus vs. DeepJet at ILD full simulation. <u>M. Meyer [2023]</u>



# Flavor tagging with ML (ParT)

- $\succ$  improved b-tagging efficiency since state-of-the-art projections from 2016
- ML models (<u>DeepJet</u>, <u>ParticleNet</u>, <u>ParT</u>) show highly improved rejection compared to LCFIPlus
- status: ready for use (in <u>MarlinML</u>)



Flavor tagging performance of LCFIPlus (top) vs. ParT (bottom) at ILD full simulation. T. Suehara [2023]

Mis-id. fraction to b jets

#### **ErrorFlow**



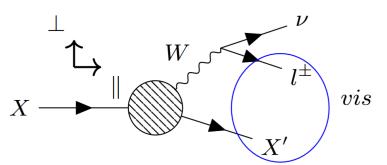
> assume full parameterization of errors for individual jets

$$\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$$

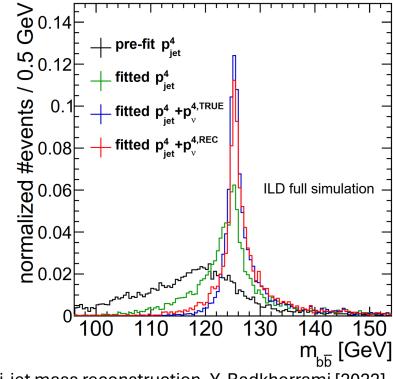
-  $\sigma_{Det}$ : detector resolution

Y. Radkhorrami [2022]

- $\sigma_{conf}$ : particle confusion in particle flow algorithm
- $\sigma_{v}$ : neutrino correction
- > status: in production (in <u>MarlinReco</u>)


### **Neutrino correction with kinematic fitting**



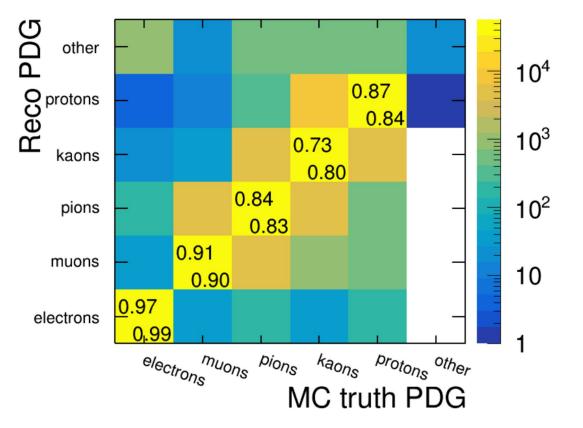

#### > for semileptonic decay (SLD) processes

– already in ZH  $\rightarrow b\bar{b}/c\bar{c}$ , 66% of events include at least one SLD

- > procedure:
  - identify/tag heavy quark jet
  - identify lepton in jet
  - calculate neutrino four momentum from kinematics with kinematic fitting, the best solution is selected
- status: in production (in MarlinReco)



Recovering the neutrino kinematics. Y. Radkhorrami [2022]




Improved di-jet mass reconstruction. Y. Radkhorrami [2022]

# **Comprehensive Particle Identification (CPID)**



- > modular and highly configurable PID toolkit
  - "plug-and-play" of multiple data sources
     e.g. at ILD: dE/dx, TOF, cluster shape
  - extension through custom inference modules
     e.g. MVA/ML models etc.
- includes default weights for BDT model
- status: in production (in MarlinReco)



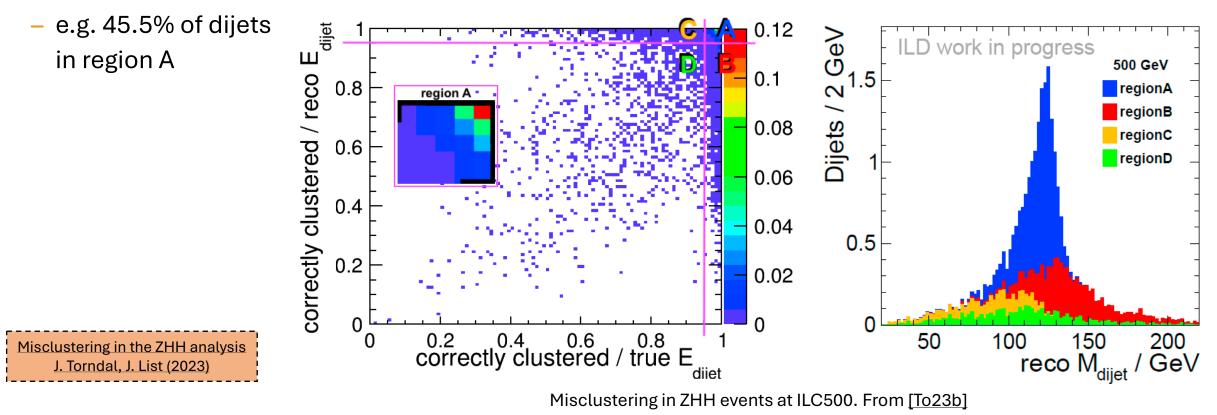
Confusion matrix for single charged partilces at ILD. <u>U. Einhaus (2023)</u>

### **Conclusion I: The ZHH Analysis with SOTA-Tools**



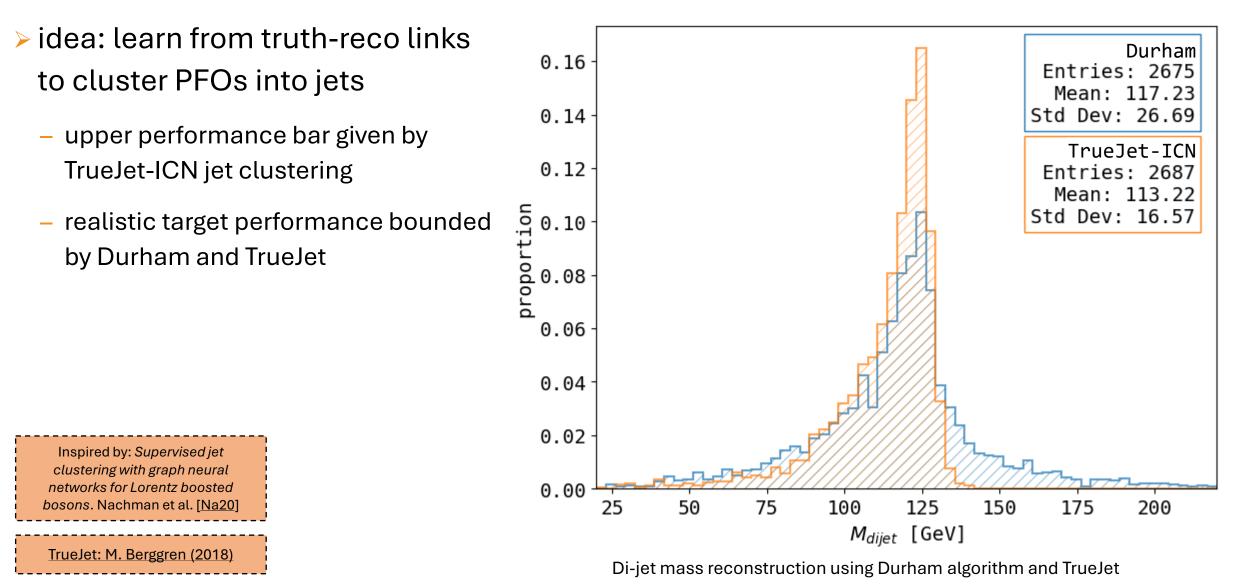
- major advancements in key aspects since last ZHH analysis [Du16]
  - flavor tagging efficiency improved by at least 5% ( $\approx 10\%$  with ML tools)
  - kinematic fits benefit substantially from full ErrorFlow paramterization
  - neutrino correction has greatly improved di-jet mass resolution in events with SLDs
  - particle identification now aware of multiple detector systems
- > better than 20% sensitivity of  $\Delta \lambda_{SM}$  /  $\lambda_{SM}$  expected with SOTA tools [To24b]




# **Tools of Tomorrow**

Potential future tools for reconstruction and analysis

# Motivation: Misclustering in the ZHH analysis

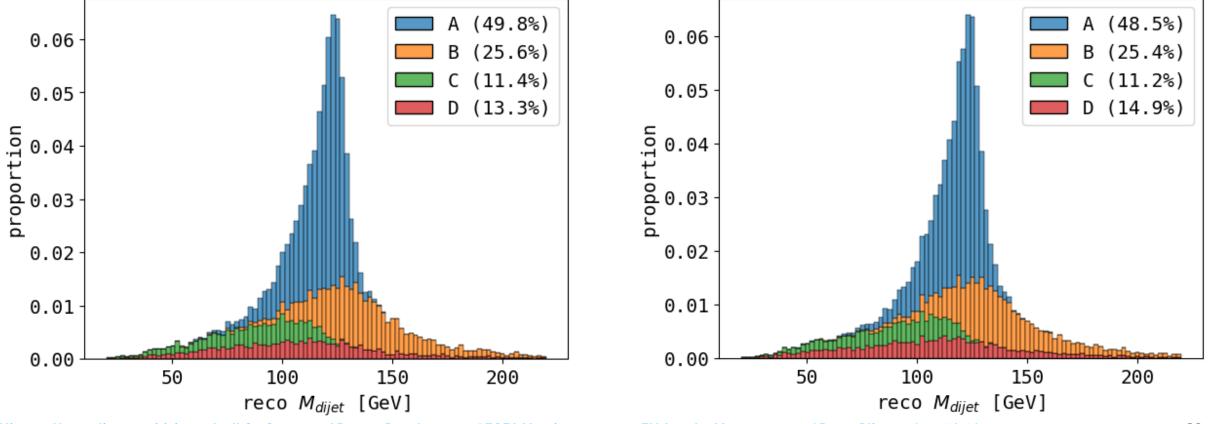



- > misclustering of PFOs to jets deteriorates the sensitivity to  $\lambda$  by  $\approx 2$  [Du16]
- > quantification: purity vs efficiency of energy in reconstructed di-jets
- > classify di-jets into 4 regions (A, B, C, D) based on threshold: > 95% on both axes



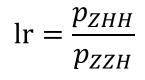
#### **Supervised Jet Clustering**






#### **Supervised Jet Clustering**

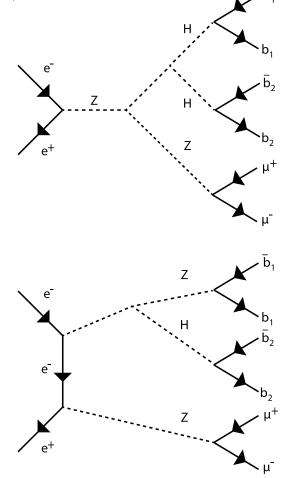



GNNSC

- proof-of-concept ML model (GNNSC) shows performance on par with Durham
  - status: proof-of-concept (Marlin processor available)
- in the future: investigate more powerful architectures
   Durham
   A (49.8%)



#### The Matrix Element Method (MEM)


- > method for calculating event-likelihoods, i.e.  $p(\text{event } \boldsymbol{x} | \text{channel i}) = p_i(\boldsymbol{x})$ 
  - example use case: separate ZHH vs. ZZH  $\rightarrow \mu^{-}\mu^{+}b\overline{b}b\overline{b}$  using likelihood ratio lr



- binary classification by cutting on lr
- $\succ$  for each event y and process i (ZHH, ZZH), solve integral

$$p_i(\mathbf{y}) = \frac{1}{\sigma_i \cdot A_i} \int |M_i(\mathbf{x})|^2 W_i(\mathbf{y} \mid \mathbf{x}) \epsilon_i(\mathbf{x}) d\Phi_n(\mathbf{x})$$

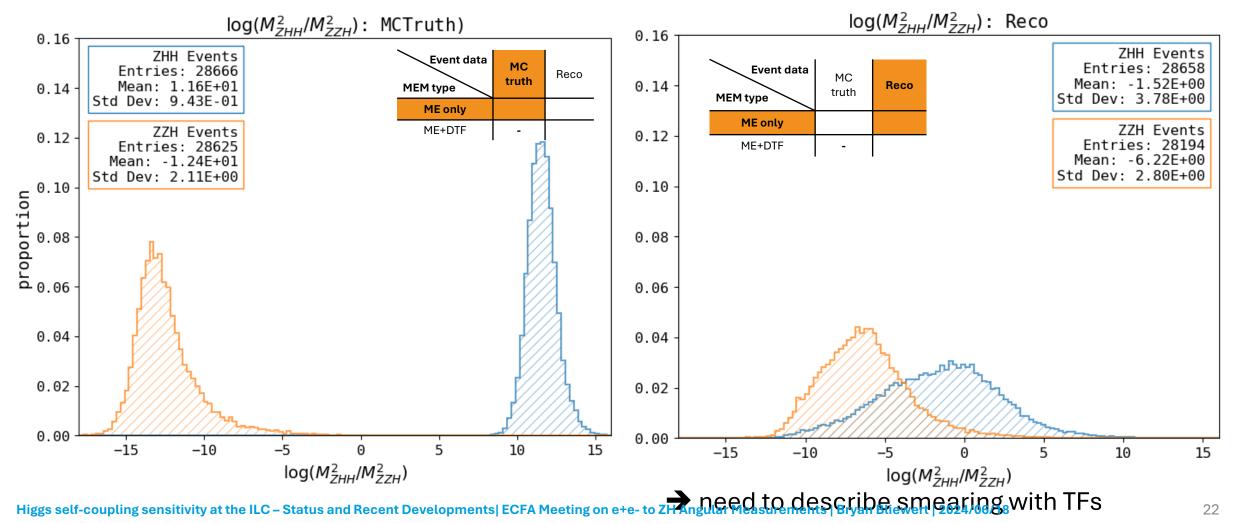
- $M_i(x)$  LO matrix element
- $W_i(y|x)$  transfer function (TF): PDF for measuring y given x; fit from ILD fullsimulation samples



 $A_i$  : acceptance of channel  $i \epsilon_i(\mathbf{x})$  : detector efficiency

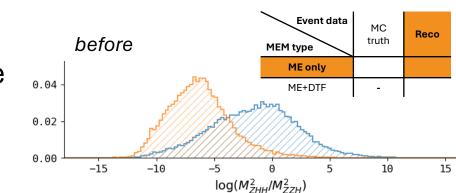


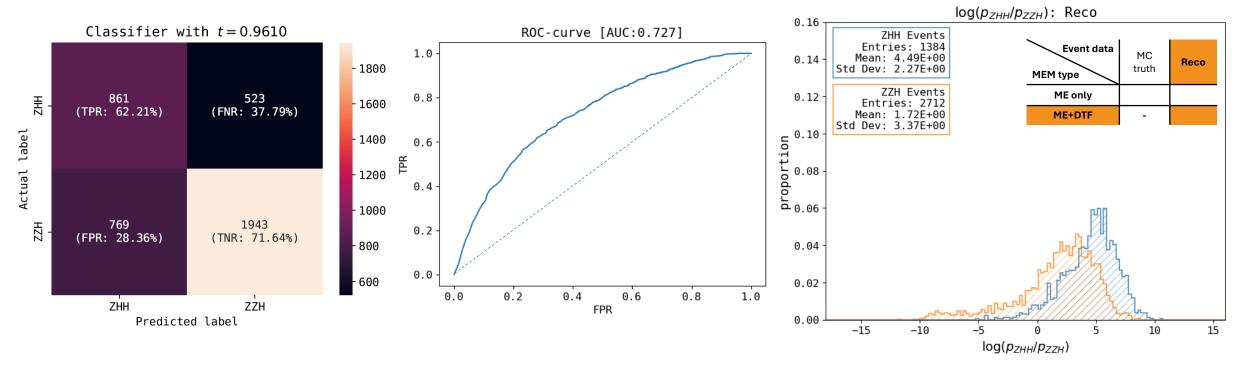
#### **MEM Introduction with Examples**




#### generator level check

#### > excellent separation


#### naive MEM

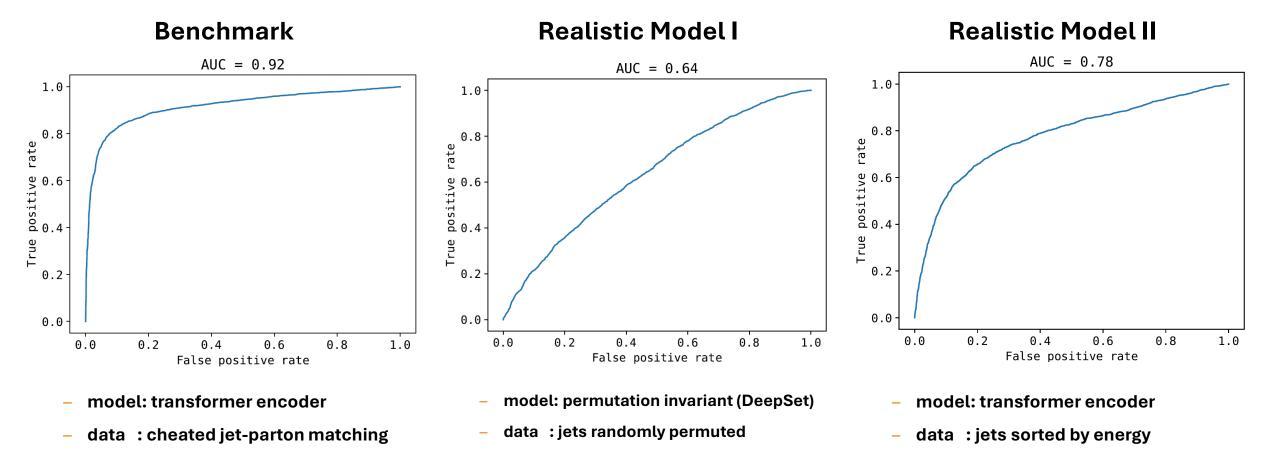





#### **MEM Results**

- > obtained using VEGAS algorithm
- by including integration over transfer functions, some separation power is regained; AUROC = 0.73








#### **Direct S/B Separation with ML models**



- > using different architectures, a binary classifier is learned to again separate ZHH/ZZH
- input data: sets of four-momenta of the muons and b-jets; train/test ratio: 80/20



# Conclusion II: The ZHH Analysis with potential future tools

- in existing ZHH analysis: jet clustering as one leading source of uncertainty [Du16]
  - "proof-of-concept" supervised ML model for jet clustering implemented
  - performance approximately on par with current reconstruction (Durham algorithm)
- MEM implemented with example use case of process separation
  - time-complexity remains an issue due to phase space integration
  - in theory, gives access to perfect discriminator
- > ML models for direct separation of ZHH/ZZH:
  - demonstrated that jet-parton matching is key information for separation power
  - best separation (AUROC = 0.78, AvgPrecision = 67%)

#### **General Conclusion**



- > major improvements in key analysis tools since last ZHH study [Du16]
  - existing SOTA are expected to improve the sensitivity on  $\Delta \lambda_{SM}$  /  $\lambda_{SM}$  to better than 20%
- > jet clustering and process separation identified as leading sources of error [Du16]
  - proof-of-concept ML jet clustering on par with Durham with potential for improvement
  - MEM implementation and ML models demonstrated to improve channel separation
- > true/reco links unique to ILD full simulation allow supervised learning approaches

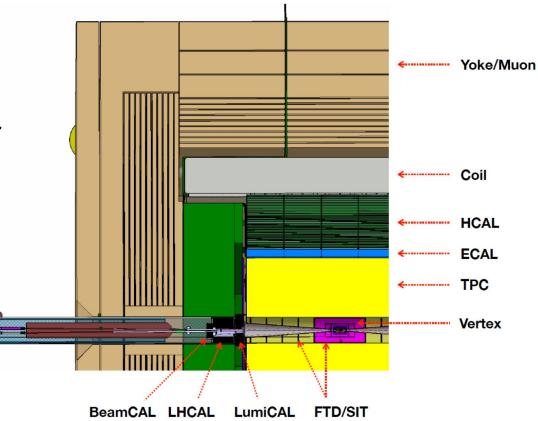
> outlook:

- new estimates on  $\Delta\lambda/\lambda$  with current SOTA reconstruction and analysis
- ever more complex ML architectures can be expected to further improve reconstruction and analysis



# Thank you for listening!

Higgs self-coupling sensitivity at the ILC – Status and Recent Developments | ECFA Meeting on e+e- to ZH Angular Measurements | Bryan Bliewert | 2024/06/18



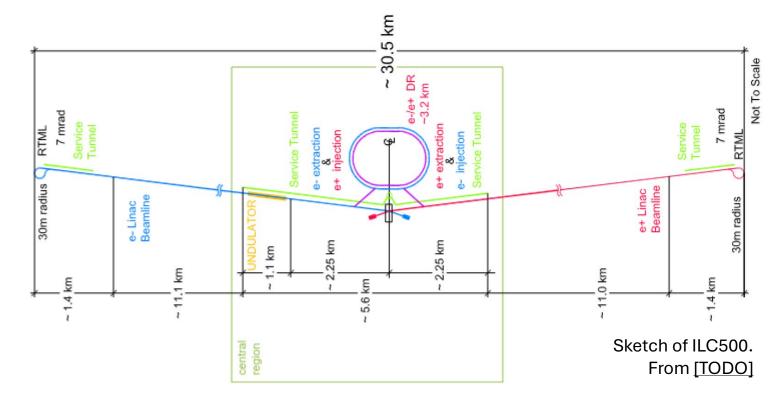

# Backup

#### **The International Large Detector (ILD)**



- Inner and Forward tracker (SiT, FTD)
- Identification of decay vertices of long-lived particles
- > Time-projection chamber (**TPC**) as main *tracker*
- Electromagnetic (ECAL) and hadronic (HCAL) calorimeters inside magnetic coil to reduce material budget
- Iron yoke, muon detector




Quarter-slice through the ILD detector. From [TODO]

#### The International Linear Collider (ILC)



> linear collider concept with multiple energy stages 
$$\left(\frac{\sqrt{s}}{\text{GeV}} = 250, 500, 1000\right)$$

- 500 GeV stage allows direct measurements of  $\lambda$  through di-Higgs production
- > mature concept (TDR), technologies available (superconducting RF-cavities etc.)

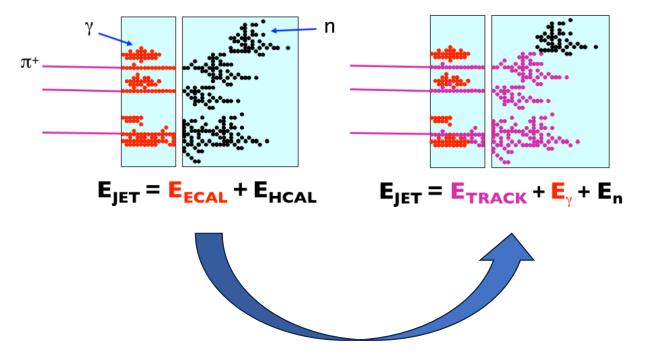


### **Future Higgs Factories**



- goal: high production of Higgs bosons
   e<sup>+</sup>e<sup>-</sup> colliders for precision measurements
- > different concepts proposed:
  - linear (ILC, CLIC,  $C^3$ ):
    - maximum energy constrained by length
    - *direct* measurements of  $\lambda$  possible
    - measurements with polarized beams possible
  - circular (FCC-ee, CEPC):
    - maximum energy limited by synchrotron radiation
    - higher luminosities through beam reuse

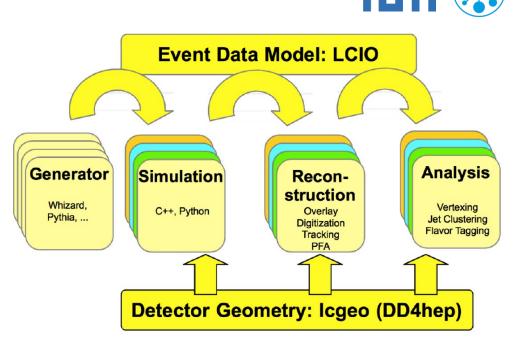
| Collider | $\sqrt{s}$        | $\mathcal{P}(e^-/e^+)$ [%] | $N_{det}$ | $\mathcal{L}[\mathrm{abarn}^{-1}\mathrm{s}^{-1}]$ |  |
|----------|-------------------|----------------------------|-----------|---------------------------------------------------|--|
| ILC      | $250{ m GeV}$     | $\pm 80/\pm 30$            | 1         | 2.0                                               |  |
|          | $500{ m GeV}$     | $\pm 80/\pm 30$            | 1         | 4.0                                               |  |
|          | $1000{ m GeV}$    | $\pm 80/\pm 30$            | 1         | 8.0                                               |  |
| CLIC     | $380{ m GeV}$     | $\pm 80/0$                 | 1         | 1.0                                               |  |
|          | $1.5{ m TeV}$     | $\pm 80/0$                 | 1         | 2.5                                               |  |
|          | $3.0{\rm TeV}$    | $\pm 80/0$                 | 1         | 5.0                                               |  |
| $C^3$    | $250\mathrm{GeV}$ | $\pm x/0$                  | ?         | 1.3                                               |  |
|          | $550\mathrm{GeV}$ | $\pm x/0$                  | ?         | 2.4                                               |  |
|          | $M_Z$             | 0/0                        | 2         | 150                                               |  |
| FCC-ee   | $2M_W$            | 0/0                        | 2         | 10                                                |  |
| FUU-ee   | $240\mathrm{GeV}$ | 0/0                        | 2         | 5                                                 |  |
|          | $2m_{top}$        | 0/0                        | 2         | 1.5                                               |  |
|          | $M_Z$             | 0/0                        | 2         | 16                                                |  |
| CEPC     | $2M_W$            | 0/0                        | 2         | 2.6                                               |  |
|          | $240\mathrm{GeV}$ | 0/0                        | 2         | 5.6                                               |  |
| HALHF    | $250\mathrm{GeV}$ | 0/0                        | 1         | $\approx 2$                                       |  |


Comparison of selected physics programs at the proposed accelerators ILC, CLIC, FCCee, CEPC,  $C^3$  and HALHF. From [Db20]

#### **Particle Flow**



- > use best combined information between detectors for highest energy resolution (Particle Flow objects, PFOs)
- > goal: best jet energy resolution


From traditional to particle flow calorimetry. From [Du16]



#### Software



- Marlin for reconstruction; important in existing ZHH-analysis:
  - TrueJet: jet-clustering of PFOs using truth information
  - isolated lepton tagging: decision trees for tagging leptons



Event flow in the iLCSoft stack. From [TODO]

#### **Durham jet clustering**



- > Durham algorithm: common jet-clustering method at  $e^+e^-$ -colliders
  - sequential algorithm: cluster objects (here: PFOs) *i* and *j* together by lowest test variable  $y_{ij}$  until either a cut  $y_{ij} > y_{cut}$  or a number of jets is reached; in Durham:

$$y_{ij} = \frac{M_{ij}^2}{Q^2}$$
$$M_{ij}^2 = k_\perp^2 = 2\min(E_i, E_j)^2 \cdot (1 - \cos\theta_{ij})$$

- is **IRC-safe**: same result when arbitrarily soft/colinear input objects are added

### Architecture: Supervised Jet Clustering with GNNs



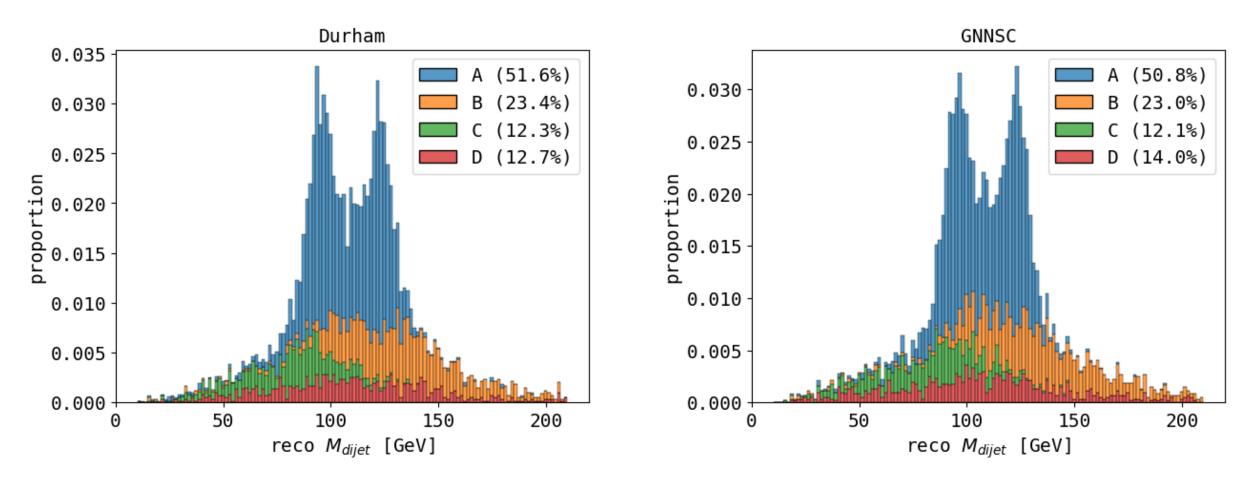
- here: implemented as hybrid model (GNNSC)
  - training a GNN in supervised manner to calculate edge scores
     here: using TransformerConv layer (implements message-passing and graph attention)
  - spectral clustering (SC) to build "jets"

TransformerConv operator from the paper Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification [Sh20].

**Training with BCE loss** *m* jets Encoder Decoder **Filter tagged Dot product &** Affinity Event Jet Node Spectral GNN Jets **PFOs PFOs** constituents embeddings Sigmoid matrix Clustering Inference

> advantages:

- permutation invariant by construction
- straightforward implementation

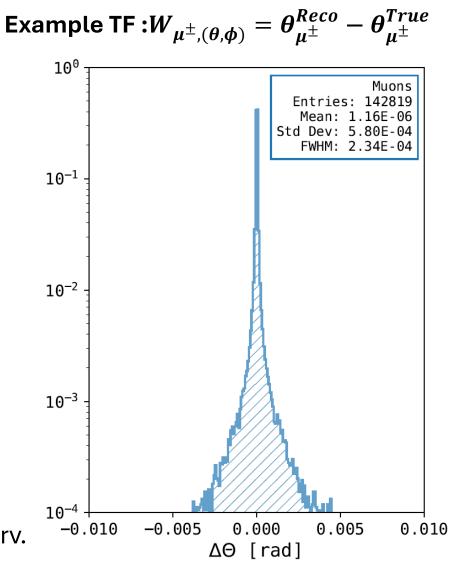

> disadvantages:

- not fully differentiable
- no inherent IRC-safety

#### Jet Clustering on ZZH events

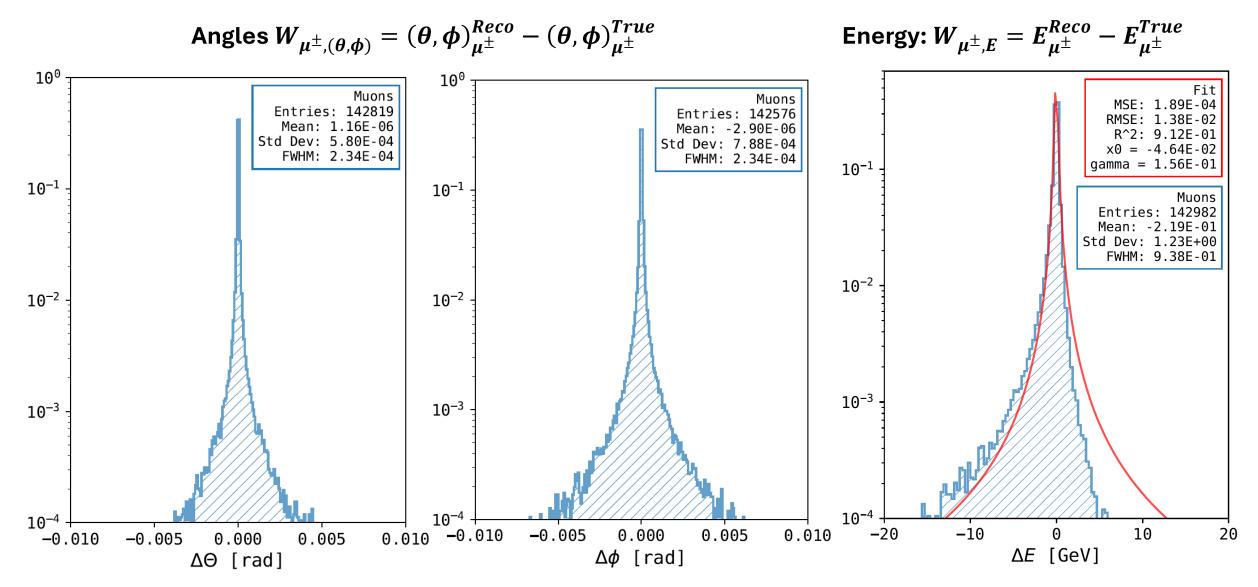


- > model was learned on ZHH events; how well does it generalize to ZZH events?
  - again, nearly identical performance of Durham and GNNSC model



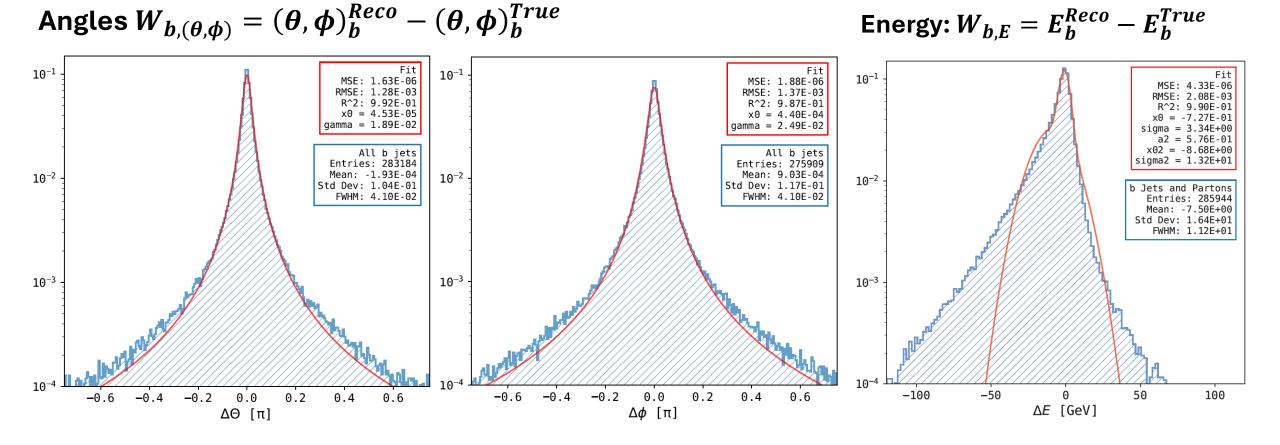

#### **Assumptions for the MEM**




> assumptions:

- same acceptance  $A_i$  for i = ZHH, ZZH hypotheses
- ignore efficiency  $\epsilon_i(\mathbf{x})$
- TF factorizes:  $W_i(\mathbf{y}|\mathbf{x}) = \prod_{j=\text{final state particles}} W_{ij}(\mathbf{y}_j|\mathbf{x}_j)$
- components of TF can be parameterized in differences e.g.  $W_{ij}(E^{reco}|E^{true}) = \widehat{W}(\Delta E = E^{reco} - E^{true})$
- muon kinematics (energy + angles) perfectly measured
- narrow width approximation (NWA): Higgs boson width is small w.r.t. mass <-> propagator delta peaked
- > dimensionality of integral reduced from 18 to 11
  - further reduction to 7 by integrating out four momentum conserv.




#### **MEM Transfer Functions – Muons**



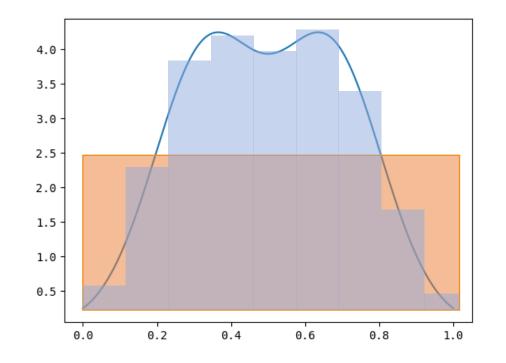


#### MEM Transfer Functions – Jets/b and $\overline{b}$ quarks





# Solving the MEM integral




problem: the chosen phase space parametrization is 7-dim.: efficient evaluation?

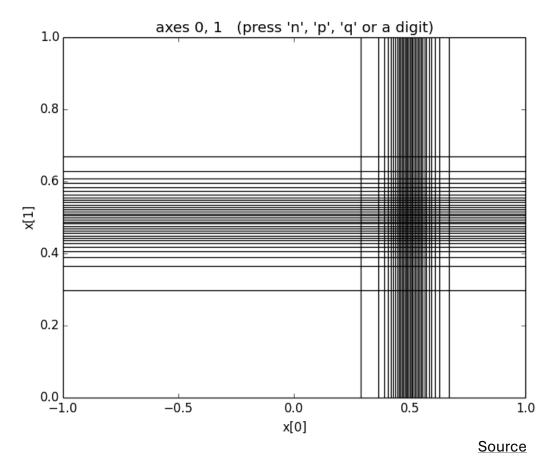
> solution: Monte Carlo (MC) integration

$$E_{p(x)}[I(f)] = \frac{1}{n} \sum_{i}^{n} f(x_i); \ x \sim p(X)$$
$$\sigma = \frac{\sqrt{E[(f - E[f])^2]}}{\sqrt{n}}$$

- crude MC: uniform sampling; in every dim:  $p(x) = \frac{1}{a-b}$
- importance sampling: sample from proposal  $x \sim q(x)$ 
  - need to find proposal dist. q(x) that fits integrand without knowing integral
  - the "better" q, the faster the variance decreases
  - many approaches: e.g. VEGAS algorithm, neural importance sampling (NIS)



#### **VEGAS Importance Sampling MC**




> assume the integrand factorizes

 $f(x) = \prod_{i=1}^{n} f_i(x_i)$ 

- > divide each dimension into n bins with equal probability
- > adjust the bin widths to sample more often in the more important regions

#### Example of a VEGAS grid after adaption

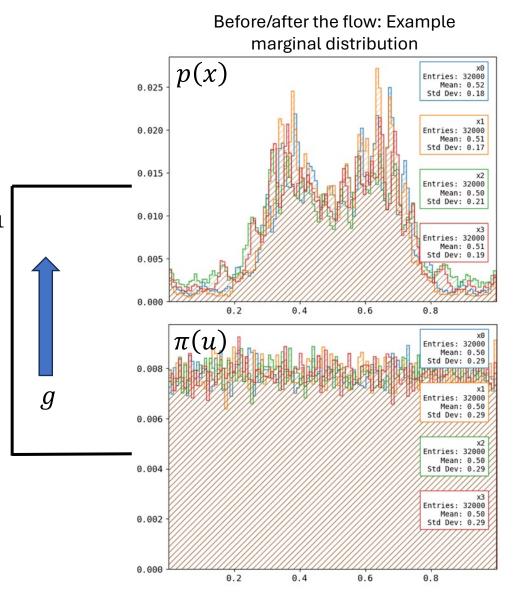


#### **Neural Importance Sampling MC**



#### principle

- from a known base distribution  $u \sim \pi(u)$
- use ML to learn a **bijective and differentiable function** g to transform u to a more complex distribution


x = g(u)

PDF of x given by change of variables formula

$$p(x) = \pi(g^{-1}(x)) \left| \det\left(\frac{\partial g^{-1}}{\partial x}\right) \right|$$

> here: transformation using piecewise rational quadratic spline

[arXiv:1410.8516] : NICE: Non-linear Independent Components Estimation
[arXiv:1808.03856] :Neural Importance Sampling
[arXiv:1906.04032] : Neural Spline Flows
[arXiv:2001.05486] : i-flow



 $g^{-1}$ 

#### Monte-Carlo integration for the MEM

$$P_i(\mathbf{y} \mid \mathbf{a}) = \frac{1}{\sigma_i(\mathbf{a}) \cdot A_i(\mathbf{a})} \int W_i(\mathbf{y} \mid \mathbf{x}, \mathbf{a}) |M_i(\mathbf{x}, \mathbf{a})|^2 T_i(\mathbf{x}, \mathbf{a}) d\Phi_n$$

$$d\boldsymbol{\Phi}_n = \prod_{i}^{\mu^-,\mu^+,b_1,\overline{b_1},\overline{b_2},\overline{b_2}} \frac{d^3\boldsymbol{p}_i}{(2\pi)^3 2E_i}$$

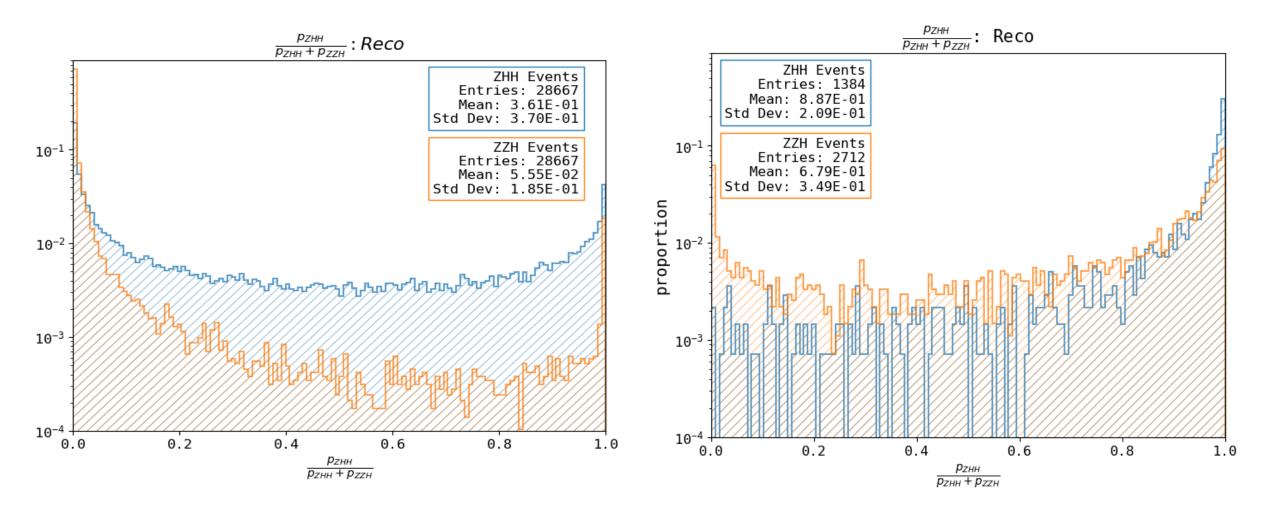
> leptons well measured  $\rightarrow$  no integration for  $\mu^-, \mu^+$ 

- conservation of four momentum and narrow-widthapproximation 
  reduction of integration to 7 dimensions
- > integration variables:  $\Theta_{b1}$ ,  $\phi_{b1}$ ,  $\rho_{b1}$ ,  $\theta_{b1b}$ ,  $\phi_{b1b}$ ,  $\rho_{b2}$ ,  $\Theta_{b2}$
- with VEGAS+ and integrand in C++, computation time
   1-2 minutes per process (including setup of integration grid)



| itn                            | integral     | wgt average  | chi2/dof | Q    |  |  |  |
|--------------------------------|--------------|--------------|----------|------|--|--|--|
| 1                              | 4.2(3.6)e-09 | 4.2(3.6)e-09 | 0.00     | 1.00 |  |  |  |
| 2                              | 6.7(2.7)e-10 | 6.9(2.7)e-10 | 0.94     | 0.33 |  |  |  |
| 3                              | 6.0(2.1)e-10 | 6.4(1.7)e-10 | 0.50     | 0.60 |  |  |  |
| 4                              | 2.69(55)e-10 | 3.05(52)e-10 | 1.81     | 0.14 |  |  |  |
| 5                              | 3.49(58)e-10 | 3.24(39)e-10 | 1.44     | 0.22 |  |  |  |
| 6                              | 2.96(43)e-10 | 3.12(29)e-10 | 1.20     | 0.31 |  |  |  |
| 7                              | 5.0(1.2)e-10 | 3.23(28)e-10 | 1.42     | 0.20 |  |  |  |
| 8                              | 4.78(94)e-10 | 3.35(27)e-10 | 1.58     | 0.14 |  |  |  |
| 9                              | 8.6(2.2)e-10 | 3.43(27)e-10 | 2.11     | 0.03 |  |  |  |
| 10                             | 5.9(1.8)e-10 | 3.48(26)e-10 | 2.07     | 0.03 |  |  |  |
|                                |              |              |          |      |  |  |  |
| result = 3.48(26)e-10 Q = 0.03 |              |              |          |      |  |  |  |

| itn                                 | integral                                                                                                     | wgt average                                                                                                      | chi2/dof                                                     | Q                                                    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| <br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 1.58(18)e-09<br>1.68(19)e-09<br>1.94(19)e-09<br>1.91(13)e-09<br>1.98(27)e-09<br>2.73(99)e-09<br>1.78(10)e-09 | 1.58(18)e-09<br>1.63(13)e-09<br>1.72(11)e-09<br>1.800(82)e-09<br>1.815(79)e-09<br>1.821(78)e-09<br>1.807(62)e-09 | 0.00<br>0.13<br>0.96<br>1.04<br>0.88<br>0.88<br>0.88<br>0.74 | 1.00<br>0.72<br>0.38<br>0.37<br>0.48<br>0.50<br>0.61 |
| 8<br>9<br>10                        | 1.78(10)e-09<br>2.03(17)e-09<br>1.72(13)e-09<br>1.813(83)e-09<br>lt = 1.815(45)e-0                           | 1.834(59)e-09<br>1.816(54)e-09<br>1.815(45)e-09                                                                  | 0.74<br>0.86<br>0.82<br>0.73                                 | 0.54<br>0.58<br>0.68                                 |


MEM results for example ZHH (top) and ZZH (bottom) event

#### **MEM Results**



#### Generator level: cross-x normalized ME only

#### **VEGAS** full MEM



#### **References**



- At12 ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC in Physics Letters B, Vol. 716. Is. 1 (2012). DOI: 10.1016/j.physletb.2012.08.020
- Cm12 CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC in Physics Letters B, Vol. 716, Is. 1 (2012). DOI: 10.1016/j.physletb.2012.08.021
- Ba19 Philip Bambade et al. The International Linear Collider: A Global Project (2019). DOI: <u>10.48550/arXiv.1903.01629</u>
- Th13 Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013. ISBN: 978-1-107-03426-6. DOI: 10.1017/CBO9781139525367
- **Bu23** Anja Butter et al., *Machine learning and LHC event generation* in *SciPost Physics*, Vol. 14 (2023). License: <u>CC BY 4.0 Deed</u>. Changes: Labels, removed QCD for simplicity. DOI: <u>10.21468/SciPostPhys.14.4.079</u>
- Na20 Ju, Xiangyang and Nachman, Benjamin. Supervised jet clustering with graph neural networks for Lorentz boosted bosons in Phys. Rev. D., Vol. 102, Is. 7, American Physical Society (2020). DOI: <u>10.1103/PhysRevD.102.075014</u>
- **Sh20** Yunsheng Shi and Zhengjie Huang and Shikun Feng and Hui Zhong and Wenjin Wang and Yu Sun. *Masked Label Prediction: Unified Message Passing Model for Semi-*Supervised Classification in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021). DOI: <u>10.24963/ijcai.2021/214</u>
- Ne24 Izaak Neutelings. Piecharts of SM decays. Retrieved from here on 2024/04/24. License: CC BY-SA 4.0 Deed. No changes.
- **To24b** J. Torndal, J. List. *Higgs self-coupling measurement at the International Linear Collider* in Proceedings of the International Workshop on Future Linear Colliders LCWS2023, 2023. DOI: <u>10.48550/arXiv.2307.16515</u>
- El16 John Ellis, Mary K. Gaillard, and Dimitri V. Nanopoulos. A Historical Profile of the Higgs Boson. An Updated Historical Profile of the Higgs Boson in The Standard Theory of Particle Physics, pp. 255–274. CERN CDS, 2016. Unchanged. License: CC-BY-NC-4.0. DOI: 10.1142/9789814733519\_0014.
- **Db20** de Blas, J., Cepeda, M., D'Hondt, J. et al. *Higgs Boson studies at future particle colliders* in *Journal of High Energy Physics*, Vol. 2020, Is. 1, Springer Science and Business Media LLC (2020). DOI: <u>10.1007/JHEP01(2020)139</u>
- **Du16** Duerig, Claude Fabienne. *Measuring the Higgs Self-coupling at the International Linear Collider*. PhD-Thesis, Universität Hamburg. Verlag Deutsches Elektronen-Synchrotron, 2016. DOI: <u>10.3204/PUBDB-2016-04283</u>