ZH angular focus topic introduction

4 ZHang — Zh angular distributions and CP studies

Expert Team: Cheng Li, Chris Hays, Gudrid Moortgat-Pick, Ivanka Bozovic, Ken Mimasu, Markus Klute, Sandra Kortner

Angular distributions in Zh production can be used to increase sensitivity to both CP-even and CP-odd interactions of the Higgs boson. The Higgs self-coupling vertex appears at next-to-leading order in Zh production, and a global analysis of CP-even interactions including angular distributions from this process can improve the sensitivity to the self-coupling. The presence of a CP-odd component in Higgs-boson interactions can be probed by reconstructing the Higgs and Z boson decay planes, or by measuring and utilizing the polarizations of the Higgs-boson decay particles. These CP-odd interactions could provide an ingredient to explain the observed matter-antimatter asymmetry in the universe. Prior analyses of Zh production have found good sensitivity to CP-odd interactions, and a further understanding of this sensitivity is a primary goal of this topic.

Chris Hays, Oxford University for the focus topic expert team

ECFA ZH angular measurements meeting 18 June 2024

ZH angular distributions and **CP** studies

Areas of study for the "ZHang" focus topic:

- 1 CP-odd HZZ interactions
 - using fully simulated samples
 - in an asymmetric colllider
 - with polarized beams
 - joint constraints with CP-even interactions
- 2 Connecting CP-odd constraints to specific models
- 3 CP-odd $H\tau\tau$ interactions
- 4 Higgs self-coupling from angular distributions
- 5 Global SMEFT analysis extended to NLO, dimension-8 operators
- 6 Quantum entanglement observables

European strategy update and ECFA input

Deadline for input to the next European Particle Physics Strategy Update (EPPSU) is March 31, 2025

ECFA aims to provide a report summarizing results since Snowmass to the community by mid-December Details to be worked out soon

Anyone wishing to provide input should provide an overview by the October 9-11 workshop in Paris https://indico.in2p3.fr/event/32629/overview

Higgs/Top/EW presentations

2 Four-fermion interactions

a Charged-lepton and quark constraints from ILC b Nonstandard neutrino interactions

3 ZH production and angular studies

A CP-odd coupling sensitivity

a CP violation in the Higgs sector b CP at LHC c HZZ CP at FCC d CP at CEPC e HVV CP at 1 TeV ILC f Polarized beams for CP tests g CP in H->tau-tau

B CP-even coupling sensitivity

a Models with CP-even interactions i. H->Zy in the 3HDM ii. Additional Higgs bosons b Coupling measurements at the LHC c HZZ coupling at the ILC d HZZ coupling sensitivity to angular observables

C Entanglement sensitivity

a Entanglement in H->VV b Entanglement in H->tau-tau

4 Rare Higgs couplings

A Hss

- a Modelling parton shower and hadronization
- i. The challenge of fragmentation modelling
- ii. LHC constraints on hadronization models
- iii. ALICE charm fragmentation measurements
- iv. ATLAS b fragmentation measurements
- v. Constraining parton shower models in e+e-

b Strange tagging

- i. Flavour tagging at the LHC
- ii. Flavour tagging at e+e- colliders
- 1. Detector design
- 2. PID reconstruction
- c Sensitivity
- ii. H->ss branching fractionsii. Obstacles in Higgs-strange-coupling interpretation
- ii. Obstacles in Higgs-strange-coupling interpretati
- iii. Higgs-strange-coupling projections

B Hee

a FCC sensitivity b Energy recovery Linacs

C Invisible Higgs decays

a ILC

D Flavour-violating Higgs decays

- a Quark flavour violating SUSY
- b Flavour changing H decays at the FCC

5 Higgs self coupling

A Theory & models

- a Self-coupling in the 2HDM at ILC
- b BSM self-coupling at the ILC
- c Self-couping predictions in arbitrary models

B Experiment

a Polarization for self-coupling b ILC and C^3 prospects

6 Top-quark interactions

a FCNC in top-quark interactions b CP sensitivity in top decays

1 Electroweak interactions

A Photon interactions

a Spin asymmetry with transversely polarized beams b Neutrino anomalous magnetic moment

B Z boson interactions

a AFB of quarks at the ILC b AFB of b-quarks at the FCC c Flavour changing Z & H decays d Other exotic Z boson decays

C Gauge boson self-couplings

- a Theory b LHC c Optimal observables at e+e- colliders
- d Polarization and CP

Today's meeting

ECFA n	neeting on e+e- to ZH angular measurements / 18 Jun 2024, 14:00 → 17:30 Europe/Zurich	2 -
Videoconferer	ECFA meeting on e+e- to ZH angular measurements	🕨 Join 🛛 🗸
14:00 → 14:05	Introduction Speaker: Chris Hays (University of Oxford (GB))	🕲 5m 🗷 👻
14:10 → 14:30	CP violation in the Higgs sector Speaker: Henning Bahl	© 20m 🗷 ▾
14:35 → 14:55	CP and entanglement in H to VV decays Speaker: Juan Antonio Aguilar Saavedra (Consejo Superior de Investigaciones Científicas (ES))	© 20m 🖉 ▾
15:00 → 15:20	Polarized beams for CP tests Speaker: Cheng Li	© 20m 🖉 ▾
15:25 → 15:45	Beam polarization at CEPC Speaker: Duan,Zhe duanz	© 20m 🖉 ▾
15:50 → 16:10	CP at CEPC Speaker: Qiyu Sha (Chinese Academy of Sciences (CN))	© 20m 🖉 ▾
16:15 → 16:35	FCC-ee ZH CP studies Speaker: Valdis Slokenbergs (Johns Hopkins University (US))	© 20m 🖉 ▾
16:40 → 17:00	Higgs self-coupling sensitivity at the ILC Speaker: Bryan Bliewert (Deutsches Elektronen-Synchrotron (DE))	© 20m 🕑 ▼

First meeting

ECFA meeting on e+e- to ZH angular measurements									
Videoconferen	Ce ZHAng focus topic	► Join 🐦							
14:00 → 14:10	Introduction Speaker: Chris Hays (University of Oxford (GB))	©10m 🕑 ▾							
14:20 → 14:40	Probing the Higgs with angular observables at future e+e- colliders Speakers: Jiayin Gu (IHEP, CAS), Jiayin Gu (Fudan University)	© 20m 🖻 ▾							
14:50 → 15:10	FCC-ee ZH CP studies Speaker: Nicholas Pinto (Johns Hopkins University) FCC-ee CP Studies FCC-ee CP Studies	© 20m 🗷 ▾							
15:20 → 15:40	Sensitivity to CP-odd HVV interactions at the 1 TeV ILC Speaker: Ivanka Bozovic-Jelisavcic (University of Belgrade (RS))	© 20m 🖻 ▾							
15:50 → 16:10	Higgs self-coupling sensitivity in ZH production (theory) Speaker: Johannes Braathen (DESY)	© 20m 🕑 ▾							

Second meeting

ECFA meeting on e+e- to ZH angular measurements Monday 18 Mar 2024, 14:00 → 17:00 Europe/Zurich									
Videoconferer	CE ECFA meeting on e+e- to ZH angular measurements	🕨 Join 🛛 👽							
14:00 → 14:05	Introduction Speaker: Chris Hays (University of Oxford (GB))	© 5m 🕑 ▼							
14:10 → 14:30	ZH polarisation for self-coupling Speakers: BALBEER SINGH (Physical Research Laboratory), Balbeer Singh (University of South Dakota)	3 20m 🕑 🕶							
14:40 → 15:00	Entanglement with e+e- sqrt(s)=240/250 GeV collisions Speaker: Alan Barr (University of Oxford (GB))	© 20m 🗷 ▾							
15:10 → 15:30	FCC-ee ZH CP studies Speaker: Nicholas Pinto (Johns Hopkins University)	③ 20m 🖉 ▾							
15:40 → 16:00	LHC CP prospects Speaker: Sandra Kortner (Max Planck Society (DE))	© 20m 🗷 ▾							

CP-odd interactions: hVV status

Snowmass 2021 quantified sensitivity in terms of the CP-odd fraction fCP

$$A(hV_1V_2) = \frac{1}{v} \Big[a_1^{hVV} m_{V_1}^2 \epsilon_{V_1}^* \epsilon_{V_2}^* + a_2^{hVV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{2} a_3^{hVV} \epsilon^{\mu\nu\rho\sigma} f_{\mu\nu}^{*(1)} f^{*(2)}_{\rho\sigma} \Big] \qquad \qquad f_{\rm CP}^{hVV} = \frac{|a_3^{hVV}|^2}{\sum_i |a_i^{hVV}|^2 (\sigma_i/\sigma_3)}$$

Target of $f_{CP} < 10^{-5}$ based on a benchmark model point of the 2HDM

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	(theory)
\mathcal{L} (fb ⁻¹)	300	$3,\!000$	30,000	250	350	500	1,000	1000	250	20	1000	
hZZ/hWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$

e⁺e⁻ expectations use leptonic Z decays and assume equivalent sensitivity with quarks

pp expectations based on CMS projections using VBF production

2209.07510

CP-odd interactions: hVV possibilities

Joint analysis of SMEFT constraints on SU(2), U(1), and mixing operators (CHW, CHB, CHWB) Complementarity with LHC VBF, Wh, Zh measurements Include hZZ* and hWW* decays

Joint analysis of CP-odd and CP-even constraints

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1000	250	20	1000	
hZZ/hWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$

Experimental sensitivity at FCC-ee with 5/ab per experiment including backgrounds

Experimental sensitivity at ILC including beam polarization scenarios including backgrounds

Sensitivity at proposed HALHF collider

Potential gains from optimal observables or other multivariate methods

CP-odd interactions: Polarization for hVV

Decay-lepton correlations as probes of anomalous *ZZH* and γ *ZH* interactions in $e^+e^- \rightarrow HZ$ with polarized beams

Saurabh D. Rindani*, Pankaj Sharma

PLB 693, 134 (2010)

2. Polarization effects in the process $e^+e^- \rightarrow HZ$

We consider the process

$$e^{-}(p_1) + e^{+}(p_2) \rightarrow Z^{\alpha}(q) + H(k)$$

 $\rightarrow \ell^{+}(p_{l^+}) + \ell^{-}(p_{l^-}) + H(k),$ (2)

Table 1

The 95% CL limits on the anomalous ZZH and γ ZH couplings, chosen nonzero one at a time, from various observables with unpolarized and longitudinally polarized beams.

	Observable	Coupling		Limits for polarizations					
			$\overline{P_L = 0.0}\\ \overline{P_L} = 0.0$	$\begin{array}{c} P_L = 0.8\\ \bar{P}_L = 0.6 \end{array}$	$\begin{array}{l} P_L = 0.8\\ \bar{P}_L = -0.6 \end{array}$				
<i>X</i> ₁	$(p_1 - p_2).q$	$\operatorname{Im} \tilde{b}_Z$	4.11×10^{-2}	8.69×10^{-2}	9.94×10^{-3}				
		$\operatorname{Im} \tilde{b}_{\gamma}$	1.49×10^{-2}	2.06×10^{-2}	1.22×10^{-2}				
<i>X</i> ₂	$P.(p_{l^-} - p_{l^+})$	$\operatorname{Im} \tilde{b}_Z$	4.12×10^{-2}	5.99×10^{-2}	3.84×10^{-2}				
		$\operatorname{Im} \tilde{b}_{\gamma}$	5.23×10^{-1}	3.12×10^{-1}	$5.52 imes 10^{-2}$				
<i>X</i> ₃	$(\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Re}\tilde{b}_Z$	1.41×10^{-1}	$2.97 imes 10^{-1}$	$3.40 imes 10^{-2}$				
		$\operatorname{Re} \tilde{b}_{\gamma}$	5.09×10^{-2}	7.05×10^{-2}	4.15×10^{-2}				
X_4	$(p_1 - p_2).(p_{l^-} - p_{l^+}) \times (\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Re}\tilde{b}_{Z}$	2.95×10^{-2}	4.29×10^{-2}	2.75×10^{-2}				
		$\operatorname{Re} \tilde{b}_{\gamma}$	3.81×10^{-1}	2.24×10^{-1}	3.95×10^{-2}				
X_5	$(p_1 - p_2).q(\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Im} b_Z$	7.12×10^{-2}	1.04×10^{-1}	$6.64 imes 10^{-2}$				
		$\operatorname{Im} b_{\gamma}$	9.10×10^{-1}	5.42×10^{-1}	$9.53 imes 10^{-2}$				
<i>X</i> ₆	$P.(p_{l^-} - p_{l^+})(\vec{p}_{l^-} \times \vec{p}_{l^+})_z$	$\operatorname{Im} b_Z$	7.12×10^{-2}	1.50×10^{-1}	1.72×10^{-2}				
		$\operatorname{Im} b_{\gamma}$	2.58×10^{-2}	3.57×10^{-2}	2.10×10^{-2}				
X ₇	$[(p_1 - p_2).q]^2$	$\operatorname{Re} b_Z$	1.75×10^{-2}	2.54×10^{-2}	$1.63 imes 10^{-2}$				
		$\operatorname{Re} b_{\gamma}$	2.23×10^{-1}	1.34×10^{-1}	2.35×10^{-2}				
<i>X</i> ₈	$[(p_1 - p_2).(p_{l^-} - p_{l^+})]^2$	$\operatorname{Re} b_Z$	1.53×10^{-2}	2.22×10^{-2}	$1.42 imes 10^{-2}$				
		$\operatorname{Re} b_{\gamma}$	1.94×10^{-1}	1.16×10^{-1}	2.04×10^{-2}				

CP-odd interactions: hff & loop-induced

Target of $f_{CP} < 10^{-2}$ based on a benchmark model point of the 2HDM

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1300	125	125	3000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1000	250	20	1000	
$h\gamma\gamma$	_	0.50	\checkmark	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$hZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
hgg	0.12	0.011	\checkmark	—	_	—	_	_	_	_	—	$< 10^{-2}$
$htar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	_	\checkmark	$< 10^{-2}$
$h\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$h\mu\mu$	_	_	_	_	_	_	_	_	_	\checkmark	_	$< 10^{-2}$

Possibilities:

Complete experimental analysis of $h \rightarrow \tau \tau$ including uncertainties

 $hZ\gamma$ and $h\gamma\gamma$ sensitivity Joint SMEFT CP-even + CP-odd analysis Extend benchmark models