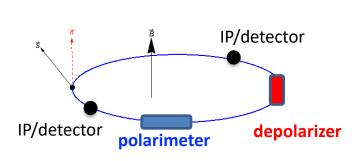
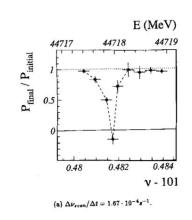


Beam polarization at CEPC

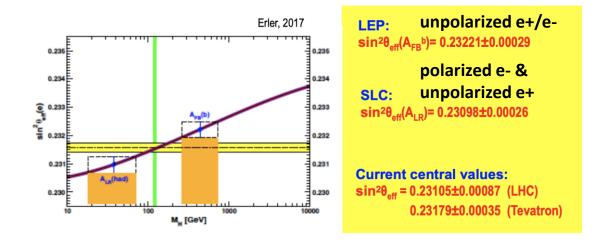

Zhe Duan
On behalf of the CEPC Polarization Working Group


Institute of High Energy Physics, CAS

Motivation of CEPC polarized beam program

Vertical polarization for resonant depolarization

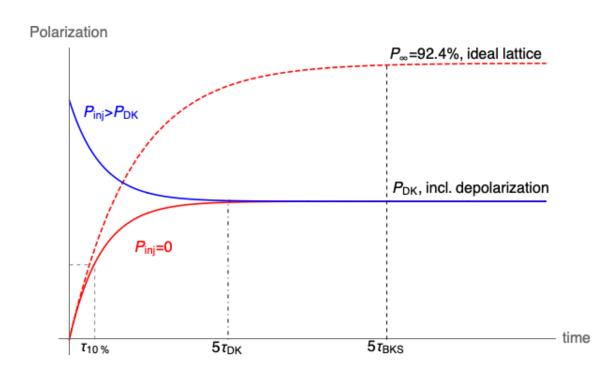
- Essential for precision measurements of Z and W masses
- > 5% ~ 10% polarization



L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995).

Longitudinal polarization for colliding beams

- Measurements of A_{FB} and A_{LR} @ Z-pole in the same experiment
- Other benefits at W & Higgs energies, e.g. CP studies
- > 50% polarization with a high luminosity


Discrepancy between the most precise measurements

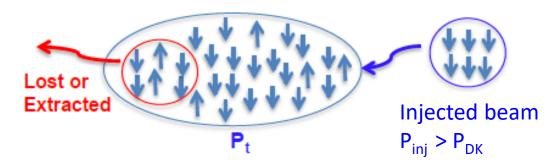
Central value has large impact on physics predictions!

Summarized as a chapter in the Appendix of <u>CEPC TDR</u>.

G. Moortgat-Pick's talk on CEPC Workshop EU @ Marseille, 2024 April

Self-polarization in the CEPC

- e+/e- beams become "self-polarized" via the Sokolov-Ternov effect in a storage ring
 - $\tau_{BKS} \propto E^{-5} \rho^2 R$
- Beam polarization build-up rate much slower than the beam decay rate @ Z
 - Boosted with asymmetric wigglers in the Collider (FCC EPOL)
 - Hard to achieve a high-level polarization
 - In conflict with a high luminosity


CEPC CDR parameters	45.6 GeV (Z <i>,</i> 2T)	80 GeV (W)	120 GeV (Higgs)
Polarization build-up time w/o radiative depolarization	256	15.2	2.0
$ au_{BKS}$ (hour)			
Beam lifetime τ_b (hour)	2.5	1.4	0.43

How to achieve a high-level polarization?

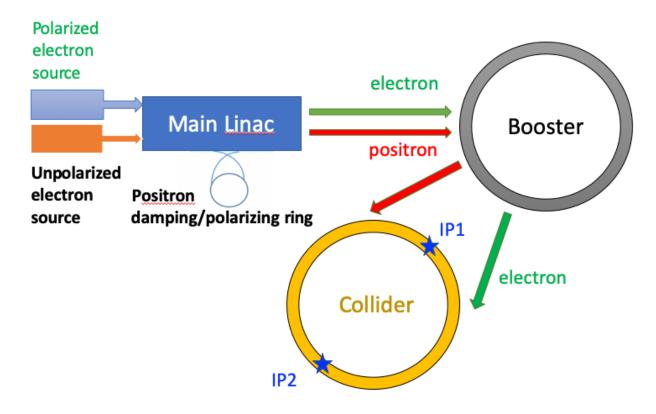
- A high-level polarization (time-averaged) P_{avg} in the Collider is attainable if
 - Top-up injection of highly polarized beam
 - Depolarization rate (τ_{DK}^{-1}) << beam loss rate (τ_b^{-1})

time

$$P_{\text{avg}} = \frac{P_{\text{inj}}}{1 + \frac{\tau_b}{\tau_{RKS}} \frac{P_{\infty}}{P_{DK}}} + \frac{P_{DK}}{1 + 1/\frac{\tau_b}{\tau_{RKS}} \frac{P_{\infty}}{P_{DK}}}$$

 $P_{\rm DK}$ depends on machine imperfections, spin rotators Assume $P_{\infty}=90\%$

$P_{\rm avg}$ > 50% requires a minimum value of $P_{\rm DK}$

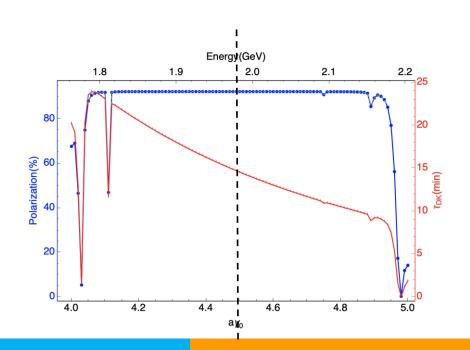

	45.6 GeV (Z)	80 GeV (W)	120 GeV (Higgs)
P _{inj} = 50%	<i>P</i> _{DK} >50%	<i>P</i> _{DK} >50%	<i>P</i> _{DK} >50%
P _{inj} = 60%	<i>P</i> _{DK} >4%	<i>P</i> _{DK} >23%	<i>P</i> _{DK} >33%
P _{inj} = 70%	<i>P</i> _{DK} >2%	<i>P</i> _{DK} >15%	<i>P</i> _{DK} >25%
P _{inj} = 80%	P _{DK} >1%	<i>P</i> _{DK} >11%	<i>P</i> _{DK} >20%

Sawtooth-shape evolution during top-up injection

Amplitude of sawtooth ~ $\frac{|P_{\rm inj} - P_{\rm DK}|}{(\tau_b + \tau_{\rm DK})/dt}$

Polarized injector for CEPC

- Polarized source
 - Polarized electron source
 - parameters less challenging than ILC, EIC
 - Positron damping/polarizing ring

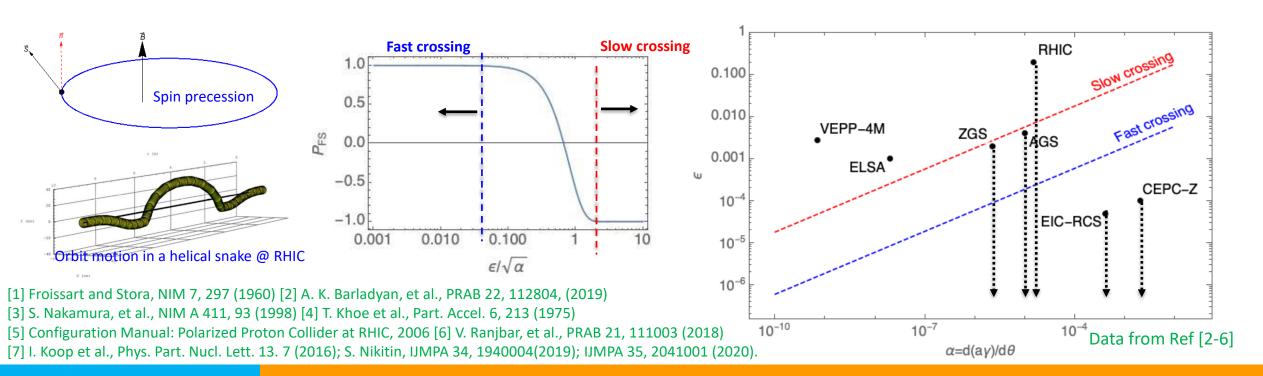


- Linac & Transport lines
 - spin direction matching @injection/extraction
 - helicity adjustment after e+ damping/polarizing ring
- Booster
 - free from intrinsic spin resonances

T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).

Positron damping/polarizing ring

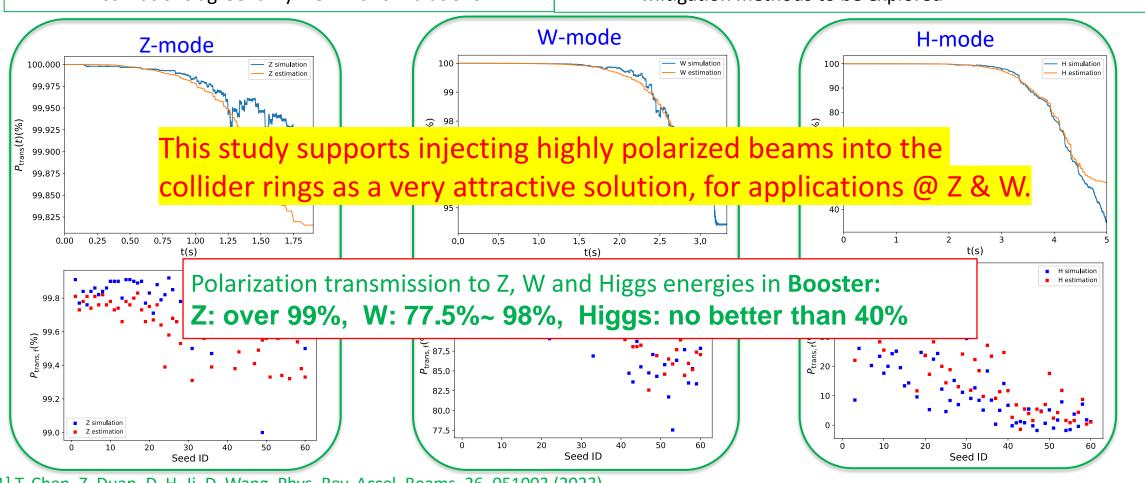
- Using the self-polarization to generate polarized e+ beams
 - For Resonant depolarization (very promising)
 - polarization build-up time ~ 14.5 min
 - extracted beam polarization @ 10min ~ 44%
 - For polarized colliding beams, more frequent top-up (under study)
 - Higher energy and/or asymmetric wigglers
 - More bunches



DR V4.0	unpolarized e+	polarized e+	
Energy (Gev)	1.983		
Circumference (m)	144.2		
Number of trains	2(4)		
Number of bunches/trian	1(2	1(2)	
Total current (mA)	12.4		
Dipole strength B_0 (T)	1.92		
U ₀ (kev/turn)	397.9		
Damping time x/y/z (ms)	4.8/4.8/2.4		
Momentum compaction	0.0078		
Storage time	20 ms	10 min	
δ_0 (%)	0.0917		
ε_0 (mm.mrad)	132		
injection σ_z (mm)	6		
Extract σ_z (mm)	6.7	6.6	
$\varepsilon_{\rm ini}$ (mm.mrad)	2500		
$\varepsilon_{\rm ext\ x/y}$ (mm.mrad)	133/13	132/13	
$\delta_{\rm inj}/\delta_{\rm ext}$ (%)	0.18 /0.092		
RF acceptance (%)	1.85		
Longitudinal tune	0.025		

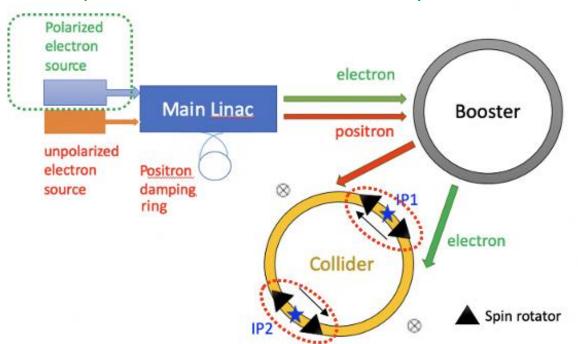
Depolarization in the booster

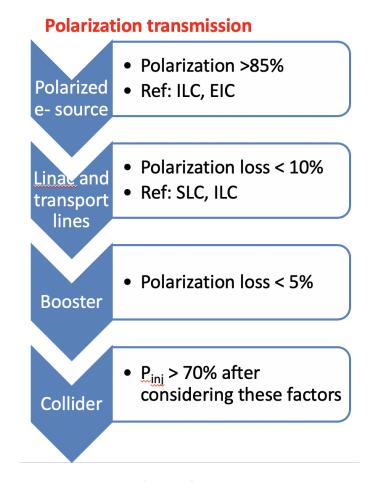
- The spin tune $v_s \approx v_0 \approx a \gamma$ changes and could cross spin resonances $v_s = k + k_x v_x + k_y v_y + k_z v_z$
 - The spin resonances $v_0=k$ are spaced by 440 MeV for e+/e-
- The non-adiabatic crossing could vary $J_S = \vec{S} \cdot \vec{n}$ and lead to depolarization [1]
 - Acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} [\text{GeV/s}] C [\text{km}]$
 - Spin resonance strength ε : highly periodic lattice design -> much weaker at lower beam energies
 - $\Delta |P| < 1\%$ in the regimes of fast crossing & slow crossing
- Previous studies suggested using Siberian snakes to maintain polarization for future 100km-scale boosters[7]


Depolarization effects: simulation vs. estimation

In the acceleration to Z & W

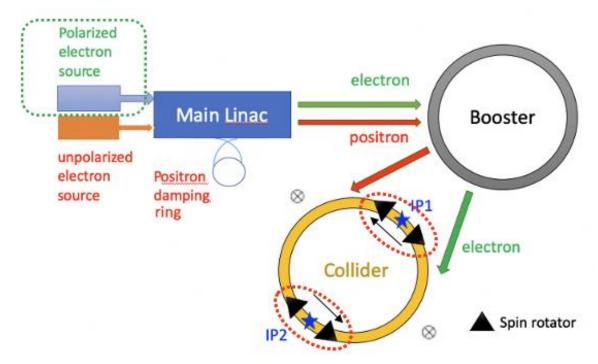
- The spin resonances are generally weak
- · Polarization is mostly maintained
- Estimations agree fairly well with simulations

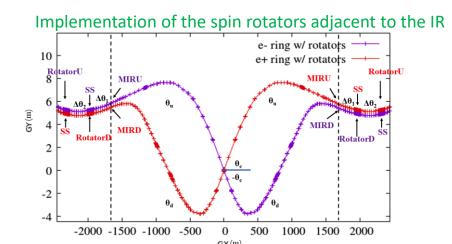

In the acceleration to H


- The spin resonances become stronger at higher energies
- Severe depolarization occurs
- Mitigation methods to be explored

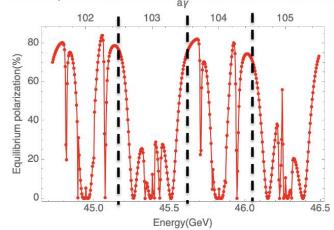
A high-level longitudinal polarization @ Z-pole

- 50%-70% longitudinal polarization for e- bunches is a reasonable goal
- Over 70% injected e- beam polarization is possible.
- Polarized e+ source is challenging for CEPC [1],
 - self-polarization at a low energy e+ ring is possible, a tradeoff between the challenges & costs of the ring versus reduction injection rate & luminosity (need more study);
 - polarization transmission efficiency is similar otherwise.



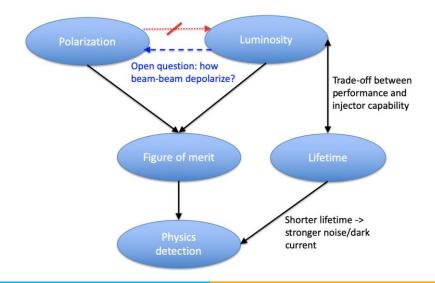


A high-level longitudinal polarization @ Z-pole

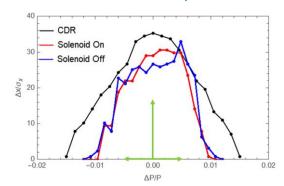

- 50%-70% longitudinal polarization for e- bunches is a reasonable goal
- Over 70% injected e- beam polarization is possible.
- Simulated equilibrium longitudinal polarization > 70%,
- >> the minimum $P_{\rm DK} = 2\%$ to attain $P_{\rm avg} > 50\%$

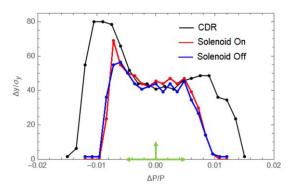
leaving a large margin for effects not yet covered.

Simulated equilibrium polarization for an imperfect lattice w/ rotators after closed orbit correction



Polarization, luminosity and beam lifetime


It is possible to attain 50%-70% e- longitudinal polarization at the nominal luminosity and simultaneously with a decent lifetime @ Z-pole

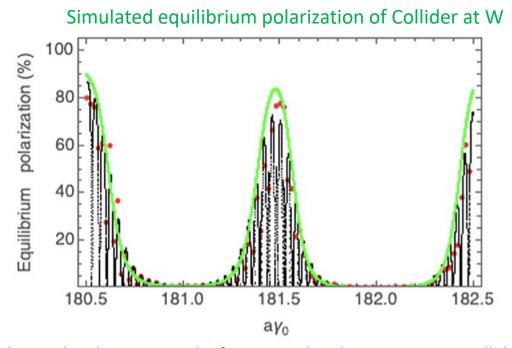

Two pairs of spin rotators

- 240 T·m solenoid each
- Occupy a space of 2.8 km, can be optimized
- No interference with the complicated IR design
- Influence to DA & beam lifetime can be recovered by dedicated sextupole optimization.

Comparison of the dynamic aperture

Contributors to the beam lifetime

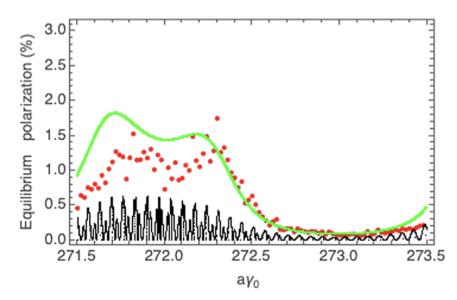
Beam lifetime contribution	CDR lattice w/ spin rotators	Comments
Radiative Bhabha	2.9 hour	ref: CEPC TDR
Vacuum lifetime	3 hour	ref: CEPC TDR
Touschek lifetime	4.63 hour	
Lifetime limited by dynamic aperture	> 9.53 hour	no loss in 100 k turns in the tracking simulations
Total beam lifetime	> 1 hour	

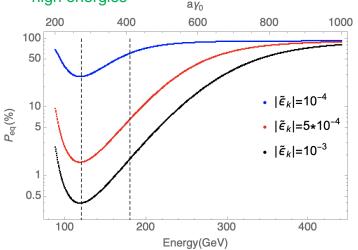

W. Xia et al., Investigation of spin rotators in CEPC at the Z-pole, Radiat. Det. Tech. Meth. 6:490 (2022).

Prospects of Z-pole polarization for CEPC

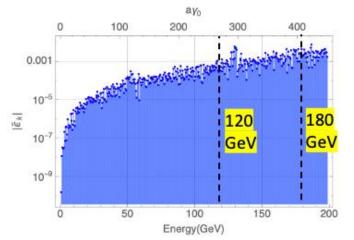
- Injecting polarized beam(s) to the Collider
- 50%-70% longitudinal polarization for e- versus unpolarized (or lower polarization) e+
 - Polarized e+ source needs more study;
- Spin helicity adjustment
 - e- : changing laser helicity at polarized e- source
 - e+: a solenoid spin rotator (21 T·m for 2 GeV) in the transport line following the polarizing ring, or a programmed spin flip in the polarizing ring prior to extraction
- RD measurements w/ a few pilot non-colliding bunches, no physics deadtime
- Accurate 3D polarimetry is needed
 - Inside the IR -> deduce longitudinal polarization @ IP
 - Outside the IR -> RD measurements

Longitudinal polarization at W?


- A good chance for >50% e- longitudinal polarization at W
 - Assume injected polarization > 60%, then P_{DK} needs to be above 23%
- Interleaved solenoid + dipole spin rotators to cover a larger energy range (under study)
 - solenoid strength scales ~ linearly with energy


Useful polarization level at Higgs?

- More challenging but possible at Higgs (Under study)
 - Simulated injected polarization < 30% -> improvements in Booster lattice design & mitigation to machine imperfections
 - Simulated equilibrium polarization ~ 1% -> mitigate depolarization by harmonic spin matching, cancellation of Sokolov-Ternov effect
- Interleaved solenoid +dipole spin rotators to cover a larger energy range (under study)


Simulated equilibrium polarization of Collider at Higgs

Prediction of resonant spin diffusion theory at ultrahigh energies

The key is to reduce the spin resonance strength by a factor of 10

Polarization R&D plan in the CEPC EDR Phase

- Implement the spin components in the post-TDR lattice designs
- Study the polarization utilities at Higgs and W energies
- Polarization-related key hardware R&D

Polarized electron gun Maintenance Utilization **Key ingredients** RF Manipulation Measurement Spin rotator Compton polarimeter Spin rotator Polarimeter R&D of high-field SC solenoids A Compton polarimeter for BEPCII Depolarizer

Modify the PAPS photocathode DC gun to a Polarized Electron Source

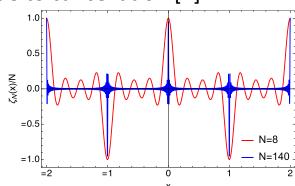
RD @ BEPCII

Summary

- Injecting polarized beams is promising for longitudinal polarization and RD measurements.
- 50%-70% longitudinally polarized e- versus unpolarized (or a lower polarization) e+ at Z with the nominal luminosity is a reasonable goal.
- Further studies of polarized beams towards higher energies as well as related hardware R&D are planned for the CEPC EDR phase.
- Physics motivations for polarized beams are warmly welcome.

Thank you for your attention!

Spin resonance structure of a CEPC Booster lattice

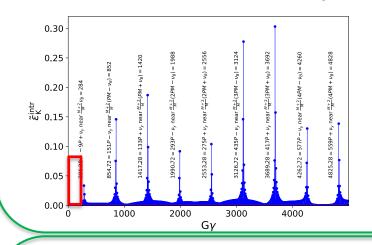

 Strength of intrinsic & imperfection resonances can be approximated by[1]

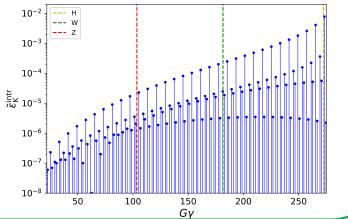
$$|\epsilon| \approx |\epsilon_{FODO}| E_P E_M$$

due to P superperiods

due to M identical FODOs in each arc

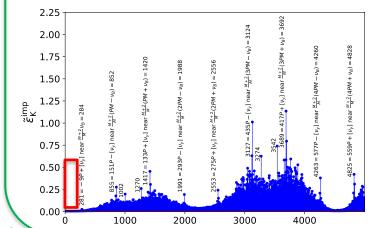
- Enhancement occurs near $\frac{mPM \pm v_B}{\eta_{arc}}$, v_B is the total v_v in all standard arc cells [2]
- Resonances at K<< v_B tend to be weak due to cancellation [2]

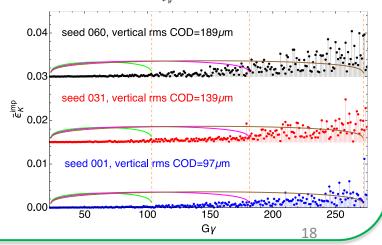



[1] S. Y. Lee, Spin dynamics and snakes in synchrotrons (World Scientific, 1997).

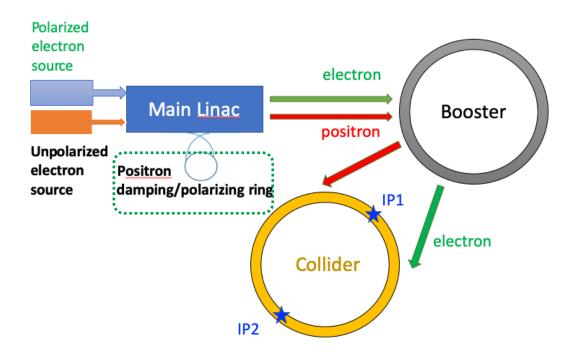
[2] T. Chen, Z. Duan, D. H. Ji, D. Wang, Phys. Rev. Accel. Beams, 26, 051003 (2023).

Intrinsic resonances: $v_0 = K = k \pm v_v$


Super strong resonances: $K=nP\pm \nu_y, n\in \mathbb{Z} \ {
m closest \ to} \ (mPM\pm \nu_B)/\eta_{
m arc}, m\in \mathbb{Z}$



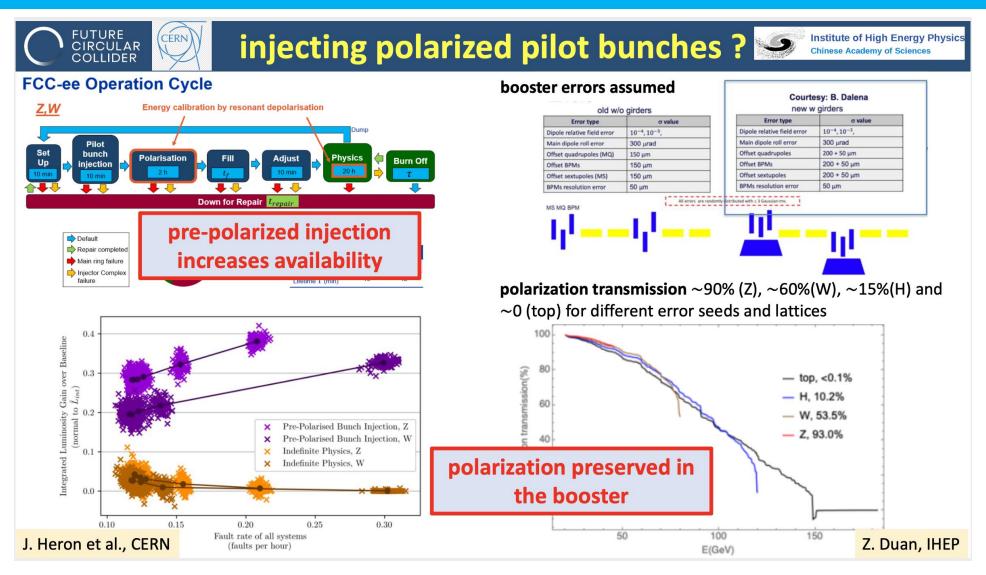
Imperfection resonances: $v_0 = K$


Super strong resonances: $K = nP \pm [\nu_y], n \in \mathbb{Z} \text{ and } K = [(mPM \pm [\nu_y]\frac{\nu_B}{\nu_0})/\eta_{arc}]$



Resonant Depolarization at Z

- It's possible to inject > 20% polarized beams to enable RD measurements at Z-pole
 - No dead time for physics, a few pilot bunches
 - Polarized e+ source ? Dual-purpose damping/polarizing ring (could accommodate both e+/e- beams to gain sufficient polarization)


Approac	hes	Self-polarization in the collider	Injection of polarized beams
Hardwa Polarized electron re gun		None	Yes
	Asymmetric wigglers	In the colliders	In the e+ damping ring or None
Polarizat	cion level	5% ~ 10%	> 70% for e-, > 20% e+
Dead tir	ne for physics	Initial 1~2 hours in each fill	None
Frequen		Every ~10 min per beam	More frequent for e- beam
RD on co	olliding beams	None	Possible at lower bunch charge

One typical design:

beam energy ~ 2 GeV, circumference ~ 150 m polarization build-up time ~ 14.5 min Extracted beam polarization @ 10min ~ 44%

RD measurements: endorsed by recent FCC-ee studies

