

Antonin MAIRE Wednesday, 09 Oct. 2024 – **ALICE Upgrade Week 2024-10**

<https://indico.cern.ch/event/1415726/>

Sensor developments for Outer Tracker

DOI:[10.5281/zenodo.13894032](https://doi.org/10.5281/zenodo.13894032)

Presentation, thanks to Jérôme Baudot, Andrei Dorokhov, Jean Soudier, Frédéric Morel

 A. Analog part, charge collection (pixel grouping) B. Numeric part, readout (asynchronous strategy) C. Prospects and project organisation

Based essentially on A. Dorokhov presentation IT/OT/FCT meeting 29 Aug <https://indico.cern.ch/event/1449476/>

ALICE3 LoI, [arXiv:2211.02491](https://arxiv.org/abs/2211.02491) ALICE3 Scoping Document [Draft:10248](https://alice-publications.web.cern.ch/node/10248) (LHCC)

$I.1 - **Change collection** : a 65nm apparent paradox$

OT spatial resolution \approx 10 µm \rightarrow Spontaneously, calls for a pixel pitch *O*[10x $\sqrt{12}$ = 35 μ m]

DPTS, [arXiv:2212.08621](https://arxiv.org/abs/2212.08621), Figs.16+17

Antonin MAIRE (IPHC) / ALICE Upgr. Week 2024-10

$1.2 - *Chapter 2*$ Charge collection : to circumvent the large-pitch issue

- **A.** Technology workout: different doping modifications in order to focus electric field, increasing bias, …
- **B.** Matrix geometry: honeycomb structures instead of squared ones (layout becoming not trivial...)
- **C.** Combination of several smaller pixels into a larger one

Options A and B face some limits for improvement: Likely not enough to achieve reliable collection for the required pitch…

 \rightarrow explore also option C

I.³ – Charge collection : pixel grouping

Where to group in the matrix ?

• in digital part?

i.e. few small pixels with their *individual* Front-End (FE) circuits, but digitally read as *one*

 \rightarrow save some bandwidth

Pb: analogue FE consumption \neq changed, no hope of power saving thanks to grouping

• in analogue part?

A. "Naïvely" connect together several charge collecting nodes:

B. To reduce S/N degradation, use a 2 -stage front-end: FE_1 and FE_2

the pixel power becomes sum of $[n.FE_1 + FE_2]$,

so if consumption of FE \approx FE₁ + FE₂,

power density reduced by number of connected nodes (1/*n, i.e.* ≈½ in practice) Pb: Signal/Noise quick degradation with *n*, due to input capacitance increase (limited number of nodes ~2),

FE

we may also gain some fraction of power density: $FE_1 + FE_2/n < FE$

 \rightarrow Pre-amplify signals with FE₁ and sum up potentially more nodes (*n=4*),

Specific R&D required:

FE circuit \neq just combination of FE₁ + FE₂, both (FE₁ and FE₂) will <u>differ</u> from FE small prototypes already tested in 180 nm TJ; however, target = 65 nm

II.¹ – Readout architectures : synchronous vs. asynchronous

1. Synchronous, based on priority encoder $(ex. ALPIDE, MIMOSIS, MOSS, MOSAIX = ITS2, CBM, ITS3 ...)$

• G. Aglieri Rinella, *The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System* VCI 2016 [10.1016/j.nima.2016.05.016](https://doi.org/10.1016/j.nima.2016.05.016)

• F. Morel, *The MIMOSIS pixel sensor*, TIPP2021 [Indico.cern.ch:981823](https://indico.cern.ch/event/981823/contributions/4293566/)

• P. Vicente Leitao *et al.*, *Development of a Stitched Monolithic Pixel Sensor prototype (MOSS chip) towards the ITS3 upgrade* TWEPP2022

[10.1088/1748-0221/18/01/C01044.](https://doi.org/10.1088/1748-0221/18/01/C01044)

2. Asynchronous, based on Asynchronous Fixed-Priority Tree Arbiter (= SPARC chiplet in ER2)

• W. Uhring *et al*, *Design and Characterization of an Asynchronous Fixed Priority Tree Arbiter for SPAD Array Readout.* Sensors 2021, 21, 3949. <https://doi.org/10.3390/s21123949>

• J. Soudier, *Design of asynchronous ASIC for CMOS pixel sensor readout* 18th Trento Workshop on Advanced Silicon Radiation Detectors, 2023 [Indico.cern.ch:1223972](https://indico.cern.ch/event/1223972/contributions/5262060/)

$II.2 - Readout arch. : logic principle, cascading of arbiters$

J. Soudier, TREDI23, [Indico.cern.ch:1223972](https://indico.cern.ch/event/1223972/contributions/5262060/)

Results from *post*-layout simulation

Hyp. :

- 1. single double-column layout, in TPSCo 65nm
- 2. for various pitches (18-30 µm)
- 3. for various arbiter size (2:1 to 1024:1)
- 4. fed with ITS2 simulated hits bank (\langle cluster size $\rangle \approx 4$ pixels)
- 5. hit rate from 1 to 200 MHz/cm^² , assuming 25-ns collision period

Focus on 24-µm pitch results in this table *(NB: no time-walk simulated so far !)*

$II.3 - Readout arch. : asynchronous readout performances$

Readout time performance

Hyp. : Matrix stimulated with random hits (with physical shape), at *100 MHz/cm²* Beware *no time-walk simulated here !*

$II.4$ – Readout arch. : asynchronous readout proposal for OT

OT requirements

- Wide range of hit rate 0.1-200 MHz/cm² (Exceeds ML/OL needs but match generic R&D)
- Compatible with σ_t = 25-100 ns for timestamping
- Fits within expected pixel pitch 25-50 µm
- Adds only few mW/cm²
- Design matching digital flow
- To be implemented in TPSCo 65 nm

Asynchronous FPA features :

Readout speed:

- Mean time per pixel around 20 ns at 100 MHz/cm²
- 99,9% of pixels read within 100ns
- Rates close to 5.10^9 particles/cm²/s, accessible

Power consumption associated to readout:

- still below 10 mW/cm² for 200 MHz/cm²
- consumption ≈ simply linear per hit (asynchronous behaviour : lower hit rate \leftrightarrow lower power)

Time stamping:

- Possibility to timestamp hit down to 2 ns, assuming:
	- Fast clock only at periphery
		- (no clock distribution over the matrix)
	- Time-walk correction

$III.1 - Proposal for OT: implementation of asyncio. readout$

A. Demonstrator = SPARC chiplet (IPHC Strasbourg + IRFU Saclay)

Chiplet planned for TPSCo 65nm in ER2 (early 2025) pixel FE : reuse of MOSAIX (provided by ITS3/CERN) Pixel size: 24.1x16.0 μ m² 4 arbiter-size variants: • 2:1 (bandwidth optimised), • 4:1,• 16:1, • 64:1 (≈ less area consumed)

B. Proposal for **OT sensor** = this asynchronous FPA as in-matrix readout

Hypotheses:

- double-column readout strategy
- time stamping, at the end of column only (periphery)
- Sensor size $row = 3.2$ cm] x $[column = 2.5$ cm] $(*$ reticle size)
	- \rightarrow 2 column x1024 charge collection pixels of 24-µm pitch i.e. 2048-pixel blocks
	- \rightarrow 1360 columns = 680 double-columns to cover ~32 mm (full sensor width)
- with grouping of 4 pixels at the Front-End i.e. 2048/4 = 512 individual 4-pixel domains to be red out
- Single arbiter, arbiter-size 512:1

(alternative : possible cascade *N*:1 with *N*≠512, still for double-column readout)

11 / 16

$III.2$ – Proposal for OT : loop on power, back of the enveloppe

Jérôme Baudot

Hypothesis : 680 double-columns and 2048 pixels per double-column

- Front-end (analogue + mixed):
	- Without grouping : assumption of 100 nA/pixel \rightarrow 22 mW/cm²
		- (*NB*: 100 nA is conservative assumption / time walk)
	- With grouping: benefit depends on power balance between $FE_1 \& FE_2$
		- If $50/50 \rightarrow 14$ mW/cm²
		- If $80/20 \rightarrow 19$ mW/cm²
- Read-out:

1 to 5 mW/cm², depending on hit-rate (1 MHz/cm² [ML+OT-like] … to 100 MHz/cm² [VD-like])

Conclusion

Range **15 to 25 mW/cm²** seems reachable, driven by Front-end design

Note : these numbers are incomplete, = only for the matrix! \rightarrow No (DAC, digital logic, output drivers, ...) in there Hopefully, still enough to stay within the specifications ($\leq 20-40$ mW/cm²)

12 / 16

Periphery / End of column will further need :

- Arbiter between columns
- Serializer to output (with trigger logic?)
- Smart daisy-chaining between sensors
- DAC, analogue biasing, slow control

Side constraint :

care to minimize non-sensitive area (*O*[1 mm] width for the periphery)

- \rightarrow To be further discussed (synergies, common conventions with VD...)
- \rightarrow Extra contributions needed to complete the picture

$IV.1 - OT$ sensor project : organisation

• Pillar 1 : **Front-end**

Basis : 180nm experience on staged Front-End IPHC: Andrei Dorokhov + part of another designer

Already under discussion within ALICE : Germany (Heidelberg, …)

• Pillar 2 : **Matrix read-out**

Basis: SPARC chiplet on asynchronous readout IPHC: new Master student arriving in 2025 + part of 65nm digital team

under discussion within ALICE: Germany

Interest from other French groups under discussion (DRD3/DRD7 / + non-ALICE3 members)

• Pillar 3 to N : **To be planned...**

- Overall steering of the project
- Design of other components of the sensor : powering, control, periphery & integration…

$IV.2 - OT$ sensor project: HR context, (ALICE₃ on a HEP map)

$IV.3 - OT$ sensor project : 1st submission of OT prototype, 2026

OT sensor prototype :

Baseline proposal ≈**25-µm** pitch with **binary** pixel (few versions of FE with/wo **grouping**) + **asynchronous** read-out, *O*[**100 ns**] time binning

• 1st alternative:

baseline with some digitisation of pixel output (ToT) ?

& aggressive timing (time-walk correction)

• 2^{nd} alternative :

baseline front-end with different read-out architectures (synchronous **vs** asynch.) ?

• incl. several splits → **modified process** to optimise tolerance to NIEL fluence

Possible size for prototype:

For pitch \approx 24 µm and one full functional region (for demonstrator only)

≈ 128 columns (*i.e.* enough columns) x 1024 rows (*i.e. already final* column length) ~ **0.3 x 2.4 cm²**

16 / 16 Consider designing full reticule-size sensor for simulation purpose : Even if 1 sub-region only will be actually submitted \rightarrow anticipation to full size with simulations, allows for early corrections of possible issues in final sensor (e.g. matrix power-grid, blocs in periphery, ...)

Appendix

$II.2 - Readout arch. : performance comparison for 512 pixels$

Firing every 512 pixel in 1 column to evaluate bandwidth, as function of controller size

Controller size, $Cs =$ stages of reduction such that : $512^{1/Cs} = f$, with *f* reduction factor "*f* to 1" Ex : $Cs = 3, f = 8 \rightarrow 3$ levels of "8 to 1" 512

19 / 16

J. Soudier, TREDI23, [Indico.cern.ch:1223972](https://indico.cern.ch/event/1223972/contributions/5262060/)