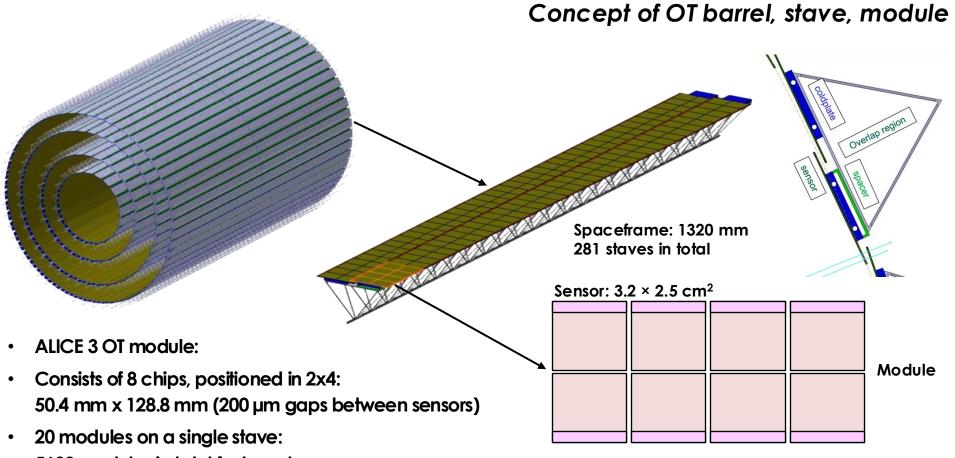
OT module design and assembly

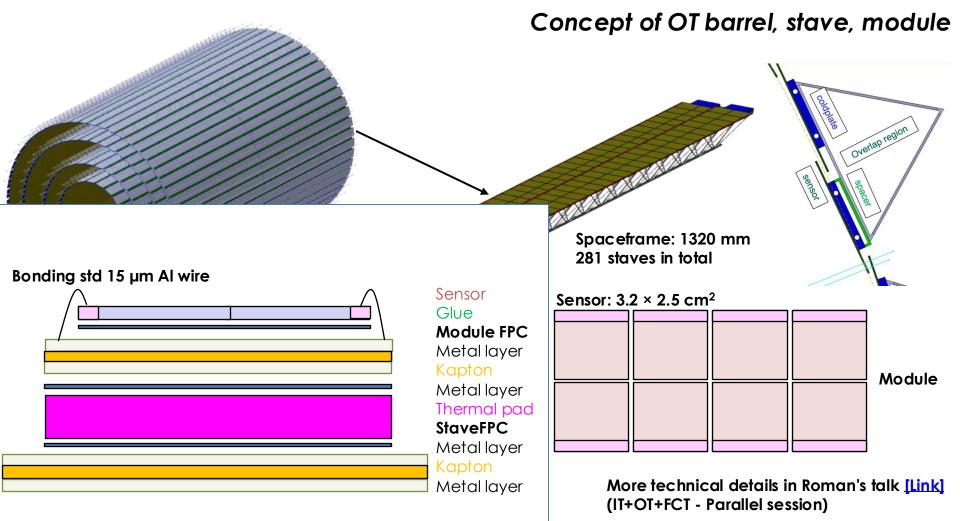
Sanghoon Lim Pusan National University Korean ALICE team


5th ALICE Upgrade Week in Krakow

٠ Det. Material Intrinsic Barrel layers Forward disks Layer Full length (Δz) Radius (r) Position (|z|) $R_{\rm in}-R_{\rm out}$ thickness resolution ٠ $(\% X_0)$ (µm) (cm) (cm) (cm) (cm) IT/OT 1 10 1×124 20 150 5-68 6 OT 30 7 1 10 1×129 180 5-68 OT 2×129 220 5-68 8 1 10 45 9 OT 1 10 2×129 60 260 5-68 5-68 10 OT 10 2×129 300 1 80 OT 10 350 5-68 11 1

ALICE 3 Outer Tracker

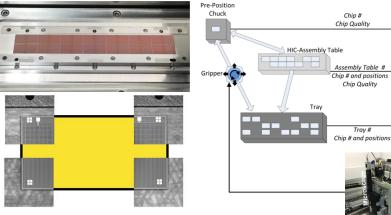
- ~50 m² of active area: \sim 33 m² for barrel
- Low material budget ($1\% X_0$)
- ~50 µm effective pixel pitch for 10 µm position resolution
 - Low power consumption: 30-50 mW/cm²


			20	23			20)24	Ļ		20	25			20	26			20	27			20)28			20)29			20)30			20	31		2	032			20	33		2	2034	4
							Ru	in S	3						LS3							Run 4											L			LS	4										
		QI	Q2	Q3	Q4	Q1	Q2	Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	L Q2	Q3	Q4	Q1	Q2	Q3 (24	Q1 (2 Q3	Q4	Q1	Q2	Q3	Q4	Q1 (2 Q	Q3 Q4
TPSCo	65m Engine	eer	ing F	lun	5			ER	2 (11	53)			ERS	3 (IT:	53)	1	ER4				ERS	5				ER	6																				
															_				_				_																								
	Chip						De	sig	n	Pr	oto	ypi	ng		Pro	oty	pir	EDR	Pr	e-pr	od.	PRF	2		P	rod	uctio	on													-		On-	8			
'n	Module						De	sigi	n	Pr	oto	ypi	ng		Pro	oty	pin	g	EDR	Pr	e-pr	od.	PRR					Pr	odu	ictio	on											-	On-surface		ç	2 3	-
Tracker	Mechanics	5					De	sig	n	Pr	oto	ypi	ng		Pro	oty	pin	g	EDR	Pr	e-pr	od.	PRR				Pro	duc	tion																	stall	
L L	Services										Des	ign		TDR					Pro	toty	/pin	g				P	ocu	rem	ent									Cont	inge	ncy			commissioning			Installation and	
Outer	Detector													R									As	sem	bly t	est	s	D	etec	tor	or assembly						icy	tegi		imis	8		n and				
0																																									IIICEIation	atio	sion		a	9 0	-
																																									-	3	ing	0			

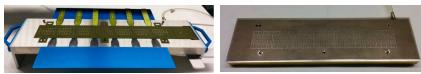
5620 modules in total for barrel

2688 modules for disks

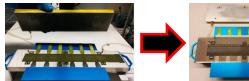
More technical details in Roman's talk [Link] (IT+OT+FCT - Parallel session)


Path to the module after sensor fabrication

Sensor test procedure for ITS2 # for ALICE 3 OT 5% **Raw Wafer Production Raw Wafer QA** 1,500 raw wafers MEMC (Italy) TMEC (Thailand) 1.200 CMOS wafers 8% Wafer Probe Testing **CMOS Manufacturing** CERN TowerJazz (Israel) 1,920 CMOS wafers (2/25)Thinning & Dicing 55,000 sensors FUREX (South Korea) 109,200 sensors **Chip Series Testing** 100% **Pick & Place** FUREX (South Korea), tbc. Pusan Yonsei Chip-level test after postprocessing Detector assembly \sim 1 year for chip test


Chip-level or wafer-level test for ALICE 3 OT? Under discussion with a wafer probing company in Korea for a test run

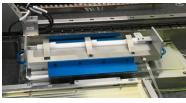
Module assembly procedure for ITS2 OB 2600 modules for ~2 years in 5 sites


1) Chips positioned on the HIC table

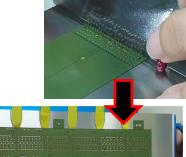
2) Glue mask on FPC

FPC and glue mask on the gripper

ALICE 3 OT:


5620 for barrel and 2688 for disks ~10000 modules considering yield and spares

3) Gluing and curing



~5 hours curing time

Module assembly for ALICE 3 OT

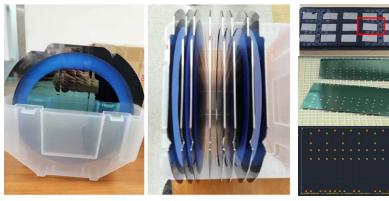
- Automatization and industrialization of module assembly •
 - Collaboration with MEMSPACK _ using a multi-purpose machine die bonder

Integrated Dispenser Pressure/time (Musashi®), Auger, Jetter types available

- Epoxy stamping option
- · Filled and unfilled epoxy, wide viscosity range
- · Small footprint, low cost-of-ownership

 Fully Automatic cycle for Multi-Chip production · Up to 7 Pick & Place tools (optionally 14), 5 eject tools · Stamping tools and calibration tools possible

Vision Alignment New high-speed image processing unit · Full alignment & Bad mark search Pre-defined fiducial geometry & customized teaching

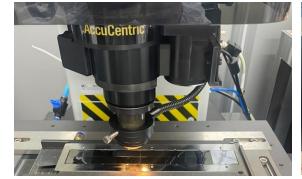

Pick & Place Head Die Attach, Flip Chip and Multi-Chip in one machine

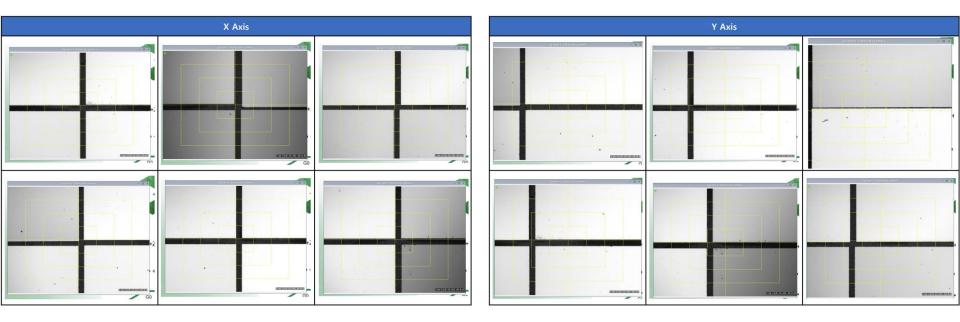

· Die pick from: wafer, waffle pack, Gel-Pak®, feeder · Die place to: substrate, boat, carrier, PCB, leadframe, wafer · Hot and cold processes supported: epoxy, soldering, thermo-compression, eutectic

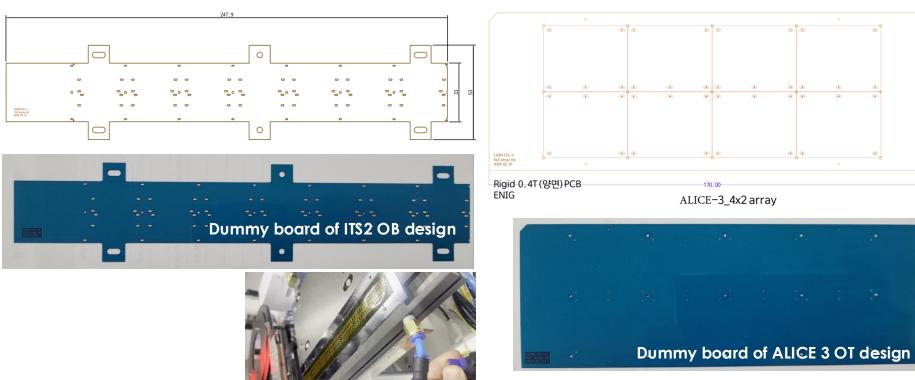


Dummy module assembly (2023 Dec.)

Dummy HIC production (ITS2 OB design) for machine validation (using double-sided tape): •






Dummy module assembly (2024 Mar.)

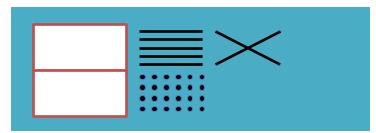
- Chips are aligned with respect to the marker on the FPC Chip-to-chip alignment may vary due to the precision of FPC production
- Difficult to achieve stable results of position precision due to the warpage of dummy FPC
 - Different brightness is because of the tilt of chips

Dummy module assembly (2024 Mar.)

- 2nd production of dummy chip and dummy board
 - Both for ITS2 OB HIC design and ALICE 3 OT design
 - Using thicker chips (50-100 μm) and boards (0.3 mm) to validate the repeatability of position precision

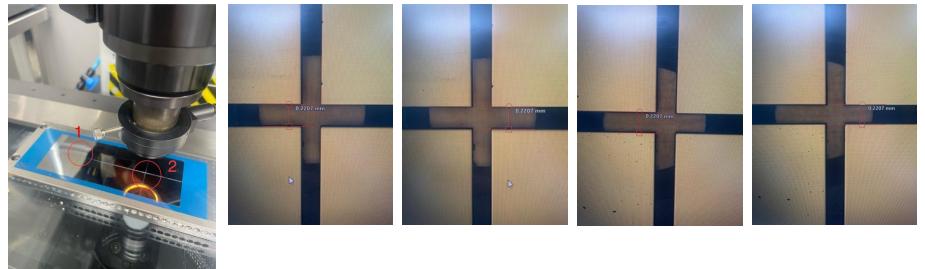
60,00

Dummy module assembly (2024 Mar.)


- 2nd production of dummy chip and dummy board
 - Both for ITS2 OB HIC design and ALICE 3 OT design
 - Using thicker chips (50-100 μm) and boards (0.3 mm) to validate the repeatability of position precision
 - Successfully produced five modules with a good position precision (using double-sided tape)

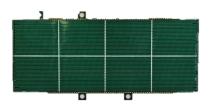
	Distance	measureme	nt – 🗆 :	×	Dist	ince measurem	ient – D
Measure#	PP-X	PP-Y	Distance	Measure#	PP-X	PP-Y	Distance
neasure#				1			
	30.149999 mm	0 mm	30.149999 mm	2	-0.000002 mm	15.15 mm	15.15 mm
2	30.15 mm	0 mm	30.15 mm	3	0 mm	15.149999 mm	15.149999 mm
3	30.149999 mm	0 mm	30.149999 mm	4	0 mm	15.149999 mm	15.149999 mm
4	30.15 mm	0 mm	30.15 mm	5	0 mm 0 mm	15.15 mm 15.149999 mm	15.15 mm 15.149999 mm
5	30.15 mm	0 mm	30.15 mm	7	0 mm	15.149999 mm 15.15 mm	15.149999 mm 15.15 mm
6	30.149999 mm	0 mm	30.149999 mm	· · · · · · · · · · · · · · · · · · ·	0 1000	10.10 mm	13.13 100
					•		
	-						

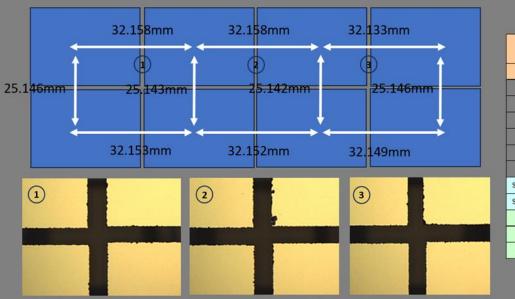
Dummy module assembly (2024 Jun.)


- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Various dispensing patterns to minimize the position variation

Dummy module assembly (2024 Jun.)

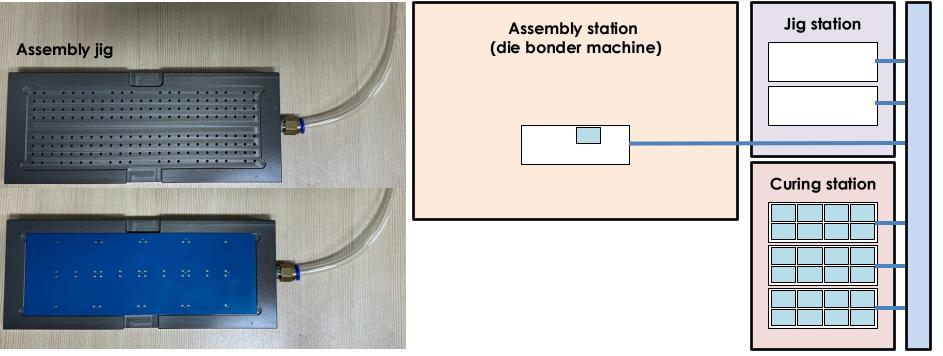
- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Various dispensing patterns to minimize the position variation
 - Reasonable position precision but needs to be optimized




Dummy module assembly (2024 Oct.)

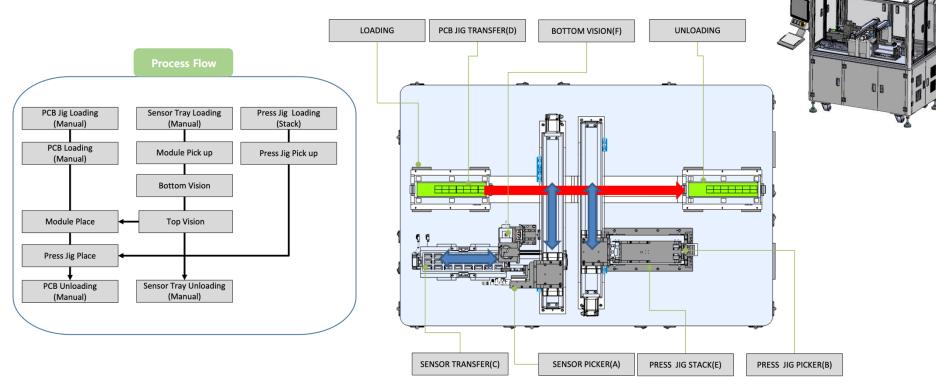
- Die bond with heat cure epoxy
 - Epoxy generally used by MEMSPACK
 - Heat cure condition: 100 °C, 30 minutes (outside from the die bonder machine)
 - Dispense epoxy on the PCB (a few lines) and place chips
 - 0.3 mm thick chip (will reduce gradually)
 - Confirmed a good position precision

- Thinner chip
- Flexible PCB
- Wire bonding
- Epoxy (Araldite 2011)

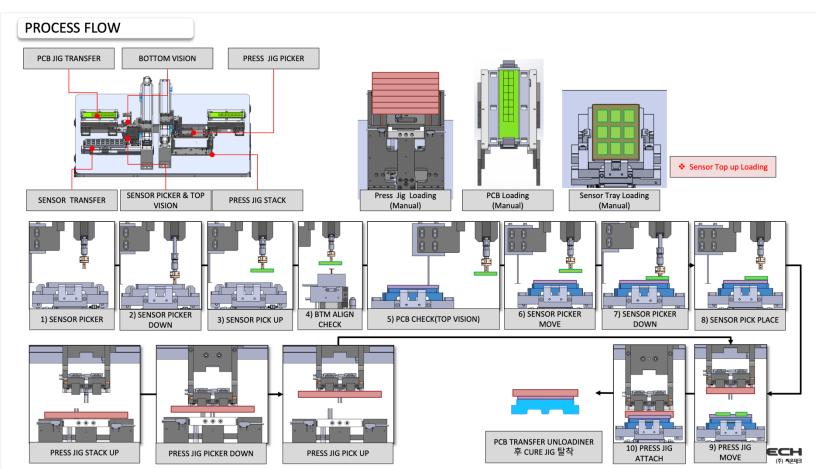


Result											
	х	Y									
#1	32.1583	25.1466									
#2	32.1581	25.1434									
#3	32.1337	25.1428									
#4	32.1582	25.1460									
#5	32.1528										
#6	32.1493										
Spec Min	0.010	0.010									
Spec Max	0.010	0.010									
MIN	32.134	25.143									
MAX	32.158	25.147									
AVG	32.152	25.145									

Concept of mass production procedure

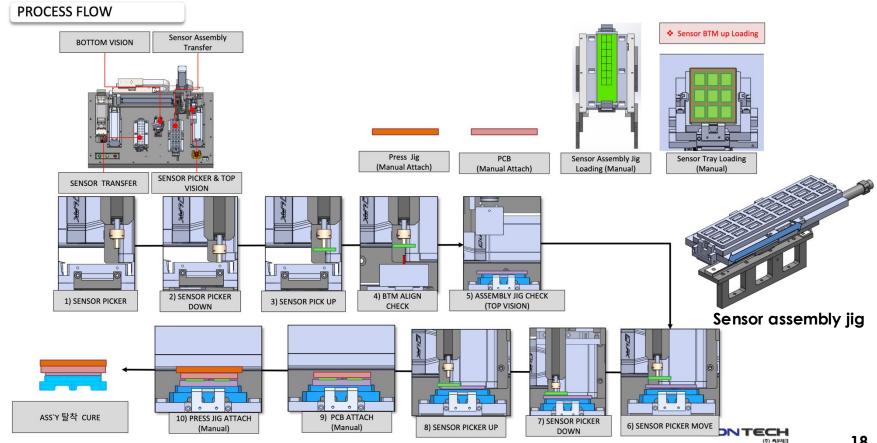

- Uses several assembly jigs to run the assembly station continuously
 - FPCB is held with a vacuum during curing
 - Plan to build the system and verify the procedure
 - Expected production rate: 20-30 modules (chips+FPCB) per day, even with Araldiate 2011

Vacuum line

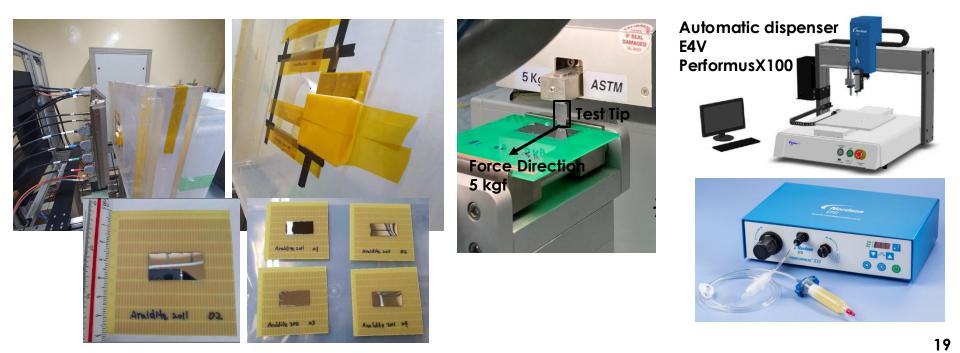

Customized module assembly machine (C-ON tech)

- Initial design for the customized machine
 - Chip handling system will provide an accurate position precision
 - Plan to produce a prototype machine in 2025

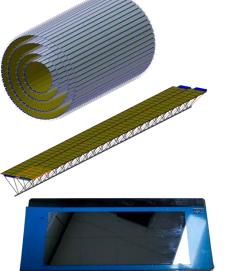
Customized module assembly machine (C-ON tech)


• Option 1: Chips are placed/attached directly onto the PCB (same as the procedure from MEMSPACK)

17


Customized module assembly machine (C-ON tech)

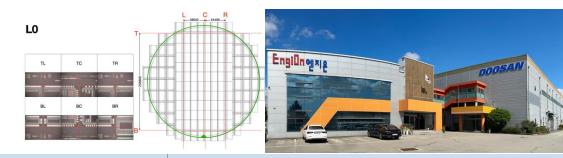
Option 2: Chips are placed onto the jig, and the PCB is attached later (same as ALICIA) ٠


Radiation hardness test for epoxy

- Proton beams (15~20 MeV) at KOMAC can be utilized for radiation hardness test of epoxies
 - High-intensity beams (10¹⁰⁻¹¹ #/cm² s)
 - Comparison between different epoxies, including Araldite 2011
 - First run in Oct/16-17 and second run in Dec/23-24

Summary and outlook

- Module design and assembly for ALICE 3 OT
 - Conceptual design of stave and module
 - R&D of module assembly with a general-purpose die-attach machine
 Obtained a good precision of chip positioning with epoxy (heat cure epoxy)
 - Further testing with more realistic conditions and developing mass production in 2025
 - R&D of a prototype of the customized assembly machine for a backup plan

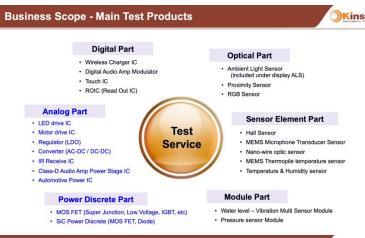


	[202	23		20	24		202	25			2026	;		202	27			20	28			20	29			2030)		20	31		20	32		2	033	6		203	34	
					Ru	n 3						LS3														Ru	in 4								LS	4						
		Q1 Q2	Q3 Q4	Q1	QZ	Q3 Q4	4 Q1	Q2	Q3 (Q4	Q1 (Q2 Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 (q 2 Q	3 Q4	Q1	Q2	Q3 Q	4 Q1	Q2	Q3	Q4 (Q1 Q	2 Q3	3 Q4	Q1	Q2	Q3 (24
TPSCo	65m Engine	eering R	uns			ER2 (I	TS3)		F	ER3	(ITS	3)	ER	4			ER5					ER6																				
	Chip				Des	ign	Pr	otot	ypin	ng	F	roto	typi	EDR	Pre	-pro	od.	PRR			Pr	odu	ctio	n												F		On-				
5	Module	Design			ign	Pr	rotot	ypin	ng	F	Prototypin		ng	EDR	Pre-pro	od.	PRR		Prod		duc	uction								III TI		On-surface		2	5							
ack	Mechanics				Des	ign	Pr	rotot	ypin			roto	typi	ng	EDR	Pre	e-pro	od.	PRR		_	F	Proc	lucti	on											acke				mm	stall	
Outer Tracker	Services							Desi	ign		T R				Prot	oty	ping	3				Pro	cur	eme	nt							Co	ontin	igen	су	er In		com		commissioning	Installation	
Dute	Detector																					Asse	emb	oly te	sts		Dete	ctor	ass	emb	ly					tegr		Imis			n and	
0																																				Full Tracker Integration		commissioning		ja s	٩	
																																				2	c	ing				

BACKUP

Post-processing (EngiOn)

- First meeting (Aug/28) to discuss a sample run with pad wafer
- Recently received three pad wafers
- Plan to request 50 um (for ITS3) can be done down to 30 um



Wafer probing (OKins)

Wafer probing: ٠

> "OKins" is a company working wafer probing Engineering support from probe card design

Plan to start a test run with the ER1 wafer •

	and a second second			
	d.	-		1 #

Main Test Systems

SPEA C430

& C600

V93K

5

6

7

8

ALS1000	ETS-300	A360	Discrete IMP8	ADVANTEST T3347

40ch)

MOSFET Wafer Test

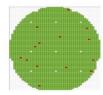
Chroma

C3650

Testian

SPIDER MID

- MOS FET Wafer testing system configuration.
- 1,000V / 20A @ 8-Parallel, Applied of 4-Terminal test - 2,000V / 300A @ 4-Serial
- ✓ Probe Station : Thin Wafer Option (150um) -4/5/6/8/12 inch
 - Inking Probe : 3set



Tester & Probe System

- ✓ MOS FET Wafer Test Capacity : 12,500wfs/month (Test time : 350msec, Net die : 5K)
- ✓ Current Production Q'ty : 6K-wfs/monthly

Test monitoring & control system

Test Map data

Kins