Time of flight sensors R&D

A. Rivetti - INFN rivetti@to.infn.it

TOF working group

Istituto Nazionale di Fisica Nucleare

The framework

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15-1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	1.3×10^{11}	6.2×10^{9}	2.1×10^{11}
TID (rad) / month	4×10^3	2×10^2	6.6×10^{3}
Material budget ($\%X_0$)	1–3	1-3	1–3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

- Low Gain Avalanche Diodes (LGADs) readout by dedicated front-end chips have become a workhorse for high resolution silicon timing detectors for charged particles
- Typical resolution is 50 ps and can be improved with thinner sensors.
- ALICE3 TOF combines large area, coarse pixel sizes and moderate event rate: perfect case for monolithic CMOS sensors with gain...which are not yet "off the shelf"!
- Approach:
 - Study the timing performance of conventional LGADs with reduced active thickness
 - Develop CMOS sensors with internal gain

Thinned LGAD: some results

Eur. Phys. J. Plus (2023) 138:99 https://doi.org/10.1140/epjp/s13360-022-03619-1

Regular Article

THE EUROPEAN PHYSICAL JOURNAL PLUS

Beam test results of 25 and 35 μ m thick FBK ultra-fast silicon detectors

F. Carnesecchi^{1,a}, S. Strazzi^{2,b}, A. Alici², R. Arcidiacono^{4,6}, G. Borghi^{7,9}, M. Boscardin^{7,9}, N. Cartiglia⁴, M. Centis Vignali^{7,9}, D. Cavazza³, G. -F. Dalla Betta^{8,9}, S. Durando⁵, M. Ferrero⁴, F. Ficorella^{7,9}, O. Hammad Ali^{7,9}, M. Mandurrino⁴, A. Margotti³, L. Menzio^{4,5}, R. Nania³, L. Pancheri^{8,9}, G. Paternoster^{7,9}, G. Scioli², F. Siviero⁴, V. Sola^{4,5}, M. Tornago^{4,5}, G. Vignola²

	Voltage applied	Gain	Time resolution
FBK25	120 V	57 ± 4	(25 ± 3) ps
FBK35	240 V	49 ± 5	$(22 \pm 2) \text{ ps}$
HPK50	245 V	61 ± 3	(34 ± 3) ps

CMOS LGADs: the approach

- Try to exploit available opportunities and optimise resources
- Add gain layers and process splits to the already funded ARCADIA mask-set
- Optimise sensor performance by changing only relevant parameters (short loops)
- Be fully compatible with a (very) standard CMOS process
- First iterati

timing, but _

CMOS LGADs: the concept

- Addition of a simple gain layer and patterned termination structures
- The deep-pwell separates the pixels and host the front-end electronics
- HV on the top: AC coupling to the front-end
- Both active and passive test structures

ARCADIA pad sensor

ARCADIA pad sensor with gain

CMOS LGADs: some details

Test devices: junction termination

deep pwell below the junction termination: electrons generated below the deep pwell reach the gain layer

Termination directly facing the active region: electrons generated below termination can be collected without gain

- Probe station testing
- External preamp

A1 and A2: Rectangular passive pads active area 250µm x 70µm (same geometry as in active pixel array)

Square passive pads with large fill factor: 250µm x 250µm

Test pads with variations of Guard Ring geometry

We have gain!

Pancheri ALICE UpgradeWeek 8Oct2024 v2.pdf - L. Pancheri

- In first short loop gain was 2.5x: gain layer to be optimised
- So far between 5 and 15, depending on the split
- Much better matching with simulations

We have gain!

Quasi-static characterization: A2 gain with NIR LED illumination

- In **device A2** the high-field region expands laterally with voltage: onset of gain at larger Voltage.
- High voltage: 55 60V → Gain is similar to central value

ALICE upgrade week - 8/10/2024

L. Pancheri – CMOS LGAD simulations

The effect of the top voltage

CMOS LGADs with front-end: first concept

11

- Front-end included in the pixel
- Similar to FE for standard LGAD
- Limit on RX coverage to be relaxed in dedicated runs

CMOS LGADs with front-end: ASIC

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: *April 2, 2024* ACCEPTED: *June 25, 2024* PUBLISHED: *July 29, 2024*

First results on monolithic CMOS detector with internal gain

U. Follo, *a,b,** G. Gioachin, *a,c,** C. Ferrero, *A.b* M. Mandurrino, *A. Bregant*, *d*

S. Bufalino [b, a, c] F. Carnesecchi [b, e] D. Cavazza, f M. Colocci [b, f, g] T. Corradino [b, h, i, 1]

M. Da Rocha Rolo[®],^a G. Di Nicolantonio,^j S. Durando[®],^{a,b} G. Margutti[®],^j M. Mignone[®],^a

R. Nania^(D), ^f L. Pancheri^(D), ^{h,i} A. Rivetti^(D), ^a B. Sabiu^(D), ^{f,g} G.G.A. de Souza^(D), ^d

S. Strazzi $\mathbf{D}^{f,g}$ and R. Wheadon \mathbf{D}^{a}

inst

CMOS LGADs with front-end: results from first short loop

- Gain: 2.5x
- Estimated jitter for 1 MIP with laser: 130 ps
- Obtained resolution in beam test with nominal parameters significantly worse: sensor-related effect

CMOS LGADs: matching simulation and measurements

ALICE 3 Days -- Umberto Follo - Giulia Gioachin

• Different set of experimental parameters to match simulated results

16

- FiB done at National Institute for Metrology
- 15 **Research (INRiM) in Torino**

CMOS LGADs with front-end: new short loop with higher gain

19

Fe55 – New production First estimation of gain using a non collimated radiation source of Fe55 Fist gain estimation 0.10Vtop = 60V **W6** 13 Amplitude distribution W15 Vback = -25V 0.08 in response to Fe55 12 11 0.06 $\geq 0.06 \\ \ge 0.04$ 01 Gain Preliminary results 1000 Vtop = 60V Vback = -25V Preliminary results 0.02800 8 0.00600 # 7 -20 2 1 6 -4 45 50 55 60 65 40 Time [s] $\times 10^{-8}$ 400 V_{top} [V] Energy Relative (keV) probability 200Peak [V/e] X_K Gain = $K\alpha_2$ 5.88772 51 *Electronics*_{*aain*}[*V*/*e*] 0 5,89881 100 $K\alpha_1$ 0.04 0.060.080.100.12 $K\beta_1$ 6.49051 V [V] 20.5 $K\beta_5''$ 6.5354 From electronics Superposition of K_{α} and K_{β} simulations matched with data

ALICE 3 Days -- Umberto Follo - Giulia Gioachin

https://indico.cern.ch/event/1415726/contributions/6144014/attachments/2942873/5170961/

6 <u>Presentazione_Upgradeweek.pdf</u> - U. Follo.

16

How much resolution could we get now... (INFN

• Beware of border effect!

...and in the next short loops?

• Beware of border effect!

Back to May 23...

- V_{top} = 40 V
- V_{back} = 160 V
- V_{Ngr} = 8 V
- f_{laser} = 100 Hz
- Signal Amplitude = 120 μA
- L. Pancheri, S. Durando

- Signals acquired with 1 structure: Wafer 5 - 250 A1 (W5_250_A1A2_A1) • Rising time $\simeq 1 \div 1.5$ ns
 - \cdot Signal duration $\simeq 6$ ns
 - ·Increasing V_{top} the signal amplitude increases
- First delivered structure are the 200 um thick option: worse set for timing!
- 50 um thick structure expected soon

Next steps

- We have CMOS sensors with embedded front-end and gain
- A very good progress in a relatively short time
- Test beam (October 24) and simulations activities to match measurements and simulations
- One short loop with thin active area (first or second quarter 2025) to further improve the time resolution by using thinner active substrate
- Full sensor optimisation and ultimate time resolution can not be achieved without a full set of dedicated masks
- This will be the last short loop which makes sense with the ARCADIA maskset
- After that we need to move to dedicated engineering run

Next engineering runs: ER1

- Larger test chips contains all what is needed in the final version (including testability:-))
- Unit must be uniformly repeatable in view of the final sensor
- Pixel size defined to optimise timing
- Keep the matrix as simple as possibile and the periphery versatile
- Large chips can accommodate a reasonable (2-3) number of different flavours

Next engineering runs: ER2

- Final, full-reticle sensor design
- Only one sensor and electronics option
- Assembled with mostly already silicon proven blocks
- Pre-production run

Next engineering runs: ER3

- It might not be needed, but HAS TO BE IN THE BUDGET!
- Things could be also fixed in "short-loops"
- Stitching?

Stitching?

https://cerebras.ai/product-chip/

- 24 cm x 24 cm, 2,7 Trilions transistors, stiched processor for AI in 7 nm...
- Cost is accordingly...

Outlook

- We have CMOS LGADs with gain!
- Development done at very low-cost so far...
- ...but there is a minimum threshold you can not go below!
- Next imminent steps: beam test, simulation tuning, final short loop
- In the next months: consolidate design, mechanics/integration, read-out teams...i.e. the full project!
- The less is done, but let's be optimistic and carry on!