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A SiPM-based RICH for Alice 3

The bRICH detector for Alice-3 has the goal to extend the charged particles identification capabilities beyond the
limits of the ToF detector:

* p/einthe prange 0.5-2.0 GeV/c A design based on an aerogel radiation coupled with SiPM sensors is
* K/pintheprange 2.0-10.0 GeV/c currently being investigated.
* p/Kintheprange 4.0-16.0 GeV/c

e 24 sensors x 36 modules

* Sensor area ~30.7 m?

* Total #channels ~ 7M
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Requirements for the Readout Electronics

* Environment with very-high potential pile-up of dark counts because
of the radiation damage of the SiPM
=> Very short acquisition gate required, ~ 1 ns, in order to reduce the
dead time and the bandwidth occupation due to the dark counts.
Only one bunch of piled-up photons in each gate.
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Charged track Gas
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Requirements for the Readout Electronics

The SiPM array of the bRICH should be capa ble of From “A novel SiPM-based aet:ogel R!CH d.etect(.)rforthe future
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In-Pixel Signal Processing

Time-of-Arrival Cherenkov Ring / Central cluster discrimination

The Time-of-Arrival information of each photon is Photons emitted from the primary aerogel radiator, in a single event, travel

crucial, since it is used to cluster the photons related through the expansion gap hitting different SiPM pixels of the sensor.

to the same event, thus discriminating the signal On the contrary, the photons produced in the interaction with the radiator

from the background of dark counts. directly coupled to the sensor provide information on the charged particle track
position.

The Time-of-Arrival is obtained from the timing

discriminator embedded in each pixel of the readout This information cannot be extracted using the Time-over-Threshold or the

ASIC, using a Time-to-Digital converter. charge integration of the whole SiPM discharge pulse because of the very high

probability of getting pile-up with a dark count event.
The Time-to-Digital converter interpolates the
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Dark Count Rate: SiPM and Bandwidth Limitations o
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Channel Modularity: Data Rate

28x e-Links
@320 Mbps
Single Data Rate

-
28-columns

chip with 32 px/col:

~10 Mbps/pixel
.

~156 events/s

for each pixel

Considering a Dark
Count Rate (DCR)
of 4 MHz, with a
25 ns bunch-
crossing period, at
the limit, the pixel
requiresalns
gate.

The channel modularity is not only constrained by the mechanical integration, but also by the high-bandwidth
requirements due to the high dark count rate. A system with a 320 Mbps LVDS data transceiver for each
column, tailored to fit the I[pGBT data transceiver requirements, can process up to 156 events/s per pixel.

¢ 5.12Gbps / FEC5:
o Header(2bit): Used by the IpGBT to align the frame.
o Slow control (4bit): IC (2bit) and EC (2bit).
o User bandwith (112bit): From IpGBT e-links.
o FEC (10bit): Can correct up to 5 consecutives errors.
¢ 5.12Gbps / FEC12: .
o Header(2bit): Used by the IpGBT to align the frame. ; r A
o Slow control (4bit): IC (2bit) and EC (2bit). o]l s i

o User bandwith (98bit): From IpGBT e-links (2bit unconnected). .’ -‘
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1.28 Gb/s ports

o User bandwith (230bit): From IpGBT e-links (6bit unconnected).
o FEC (20bit): Can correct up to 5 consecutives errors.

S
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¢ 10.24Gbps / FEC12:
o Header(2bit): Used by the IpGBT to align the frame.
o Slow control (4bit): IC (2bit) and EC (2bit).
o User bandwith (202bit): From IpGBT e-links (10bit unconnected).
o FEC (48bit): Can correct up to 5 consecutives errors.
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https://cds.cern.ch/record/2809058/files/lpGBT manual.pdf
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Channel Modularity: Sensor Integration

Mechanical Integration:

~

x4

A convenient design could be based on modules of 896 channels each
one:

* The readout ASIC has 28 columns with 32 pixels each one
* Each SiPM matrix has 8x4 devices.
* On each module, represented by a 6x6 cm? PCB,
7x4 SiPM matrices are installed, covering an area of
6.4 x 5.6 cm?
* 20x20 mm? are occupied by the readout ASIC, 9x9 mm? are
dedicated to the IpGBT

Power density:

_ For about 7.000.000 channels [30 m?],
* Each channel has a power consumption lower of 10 mW 7800 IpGBTs are required with annexed optical
* Lessthan 10 W per chip + 0.5 mW for the [pGBT

transceivers and dedicated fibers.
* Less than 15 W/board, reaching a power density lower than 400 ‘ The use of WDM techniques can reduce the number of
mW/cm? that can be managed using a standard cooling system. fibers for the same bandwidth.
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Channel Modularity: Higher BW Options

Higher bandwidth solutions are required if the dark count rate is above 4 MHz.

They consist of more readout ASICs with shorter columns in order to increase the available
bandwidth for each pixel. The number of [pGBTs is doubled but the complexity grows very fast.
This approach is limited by the cost, by the power density and by the complexity of the PCB design.

High Density
Connector to the
sensor board

High Density
Connector to the
sensor board

Readout ASIC Readout ASICs 4xASICs
896 channels 2x448 channels 4xIpGBT
28x LVDS links 28x LVDS links .
on 2 sides
[pGBT BGA 0.5 um [pGBT BGA 0.5 um
9x9 mm? 9x9 mm?
10 Gbps 10 Gbps

signals to the VTRx signals to the VTRx

\ oo s | | 31200 x 10 Gbps

modlfIXergT228x32
SiPM devices SiPM devices fibers (up to
7800 x 10 Gbps 15600 x 10 Gbps | 16 MHz
fibers (up to fibers (up to DCR)
4 MHz DCR) 8 MHz DCR)
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The System is Bandwidth and Sensor limited

An event rate of 156 kHz for each pixel can be easily managed by a variety of different pixel architectures

10

* With enough derandomization buffers (4), even a pixel based on 8-bit Wilkinson data converters (average conversion time 2Neit-1 /€ ) can

withstand this event rate.

As an example, in the picture below 4 MHz of dark count events + 156 kHz Cherenkov light events are processed by the GRAIN ASIC pixel

architecture, evolution of the ALCOR ASIC architecture.

The system is primarily bandwidth-limited, then limited by the thermal, mechanical and package/PCB integration constraints.
When the DCR increases above 5-10 MHz, the probability of dark counts and signal pile-up at the detector response level is not negligible!

¥ Waveforms X ¥ Data Frame Viewer
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The ALCOR ASIC by the INFN-Torino VLSI Group

* Original chip (ALCOR32) developed in the framework of R&D for .
cryogenic readout of SiPM (Darkside collaboration) ’ B )

* Short turn-around time thank to the re-use of several IPs (TDC, readout | '
logic) already silicon proven

* Serves as the basis for the design of front-end ASICs for EPIC and DUNE

* Cost-effective 110 nm CMOS technology
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Ongoing developments of SiPM Readout ASICs

Ongoing developments started from the silicon-proven architecture of the ALCOR x32 channel SiPM readout ASIC:

ASIC for EIC dRICH ASIC for GRAIN at DUNE

Channel modularity 64 pixels (8 columns) 1024 pixels (32 columns)
Measurements ToA, ToT ToA, ToT, Charge Integral
VETO Signal YES - Clobal, external YES - Global, internally generated or ext.
Time-of-Arrival resolution RMS =150 ps with C,, =100 pF ~ 50 ps (target)
Time-over-Threshold resolution RMS 21ns 21ns
Charge integration response N.A. Bilinear (2 gain values) + peak sensitive
Charge integral resolution N.A. 9 bit: 10 codes/ phe; 3 codes/ phe
Charge integral dynamic range N.A. [1-25 phe]; [25-150 phe]
Power density 10 MW/ channel [AV(] 10 MW/ channel [AVC]
Silicon die size 4.95 x 378 mm? 220x20 mm?
Operating Temperature 300 K 77 K-300 K
Number of LVDS Tranceivers 8 (one for each column) 32 (one for each column)
LVDS Transceiver Speed 320 Mbps SDR or 640 Mbps DDR 320 Mbps SDR
Clock Frequency 310 -325MHz 310-325MHz
Power gating mode in low duty cycle No Yes

Perspectives for a RICH front-end based on the ALCOR architecture and possible synergies with other experiments



The SiPM Readout ASIC for GRAIN at DUNE

DUNE is a novel long-baseline
accelerator neutrino experiment under
construction in the USA, consisting of
two detectors located 1300 km apart.
The Near Detector complexis located
at Fermilab, downstream the neutrino
beamline, while the far detector is
hosted underground in the Sanford
Facility in South Dakota.

The GRAIN detector is a cryogenic LAr
active target located inside the SAND
apparatus at the Near Detector.

GRAIN is able to perform not only
timing measurement and calorimetric
charge measurement, but thanks to an
optical focusing system, it can perform
track imaging thus reconstructing the
interactions of the secondary charged
particles produced by the primary
neutrino interaction.

Sanford Underground
Research Facility
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The SiPM Readout ASIC for GRAIN at DUNE

The liquid Argon active target is a cryogenic vessel containing 1 ton of liquid Argon at 77 K.

lonizing charged particles are produced by weak interactions of the neutrino beam with the target.
The scintillation process of the liquid Argon emits in the spectral region of VUV, as a consequence of
the decomposition of an Ar*, excimer molecule.

INFN-Genova and INFN-Bologna are currently investigating two different techniques for focusing the
VUV scintillation light: an approach based on coded-masks that maximize the active volume and a

solution based on N, lenses, that reduces the photon absorption. The scintillation light is focused
on 32x32 SiPM pixel matrices.
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[1] Araujo, Gabriela Rodrigues. Wavelength Shifting and Photon Detection of Scintillation Light from Liquid Argon.2019. DOlorg (Datacite),
https//doiorg/1013140/RG.2.2.2265679360

[2] VICENZI, MATTEO. A GRAIN of SAND for DUNE Development of Simulations and Reconstruction Algorithms for the Liquid Argon Target of the SAND De tector in
DUNE.Jan.2023.DOlorg (Datacite),
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The SiPM Readout ASIC for GRAIN at DUNE

The signal produced by each SiPM has a complex

. . . . photons photons
structure, since it contains single photon pulses as Erves 95008 Erves 30099
well as pulses with a large number of piled-up 10° Good images Sdper ezt Fullimages siabey . 202
photons. We are interested in: - i
* Detecting single photons (threshold = 0.5 phe) - “E
* Timestamping the largest possible amount of 0
10° E
events g
« e o e o 0 10E
*  Minimizing the amount of charge that is not : ;
integrated and digitized. o
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Plots from “ASIC requirements for GRAIN optical detector readout” — A. Caminata et al time (ns)
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Requirements for the GRAIN ASIC

In such a complex signal, at the output of the TIA it is not possible to
estimate the photon number using the Time-over-Threshold

method, a charge integrator with single-photon resolution and large

dynamic range is needed. 2 x 2 mm? (140 pF)

The average TDP needs to be limited to 5 mW / cm? to avoid phase SiPM Size 3 x 3 mm2 (500 pF)
transition in the liquid Argon. Very high channel density (1024 G Epane T
channel / chip) and different interfaces are needed. annets

Operating Temperatures 300K-77K
The event dataframe is expanded from 32 bits to 64 bits in order to <Power Consumption> 5W/cm?°

transmit also the integrated-charge information consisting of the ADC On > 9.6 ps (50 ps)
. Duty Cycle 0
code and the analog integrator status flags. Off *<0.1s

It is more robust thanks to the Hamming Forward Error Correction. ‘ -e ToA - ToT

Event Word Integrator Dynamic Range 100 PE

|63 [62]61[6059][58]57[5655]54[53]52 [51[50 [49[48[47[46[45[44[43[42[41[40[39 [38[3736[3534[33]32 | RMSToA(firstPE) 100—150p5/1PE

[ Column ID [ Channel ID I Gain ID [ ADC ID [ Charge Integral I Time-over-Threshold Counter ‘

\ 5-bit \ 5-bit | 2bit | 2bit | 9-bit | 9-bit | RMsToT =ns

(3130292827 [26[25 2423222120 [19]18 [17[16|15[14[13[12[11][10[9 [8 [7 [6 [5 [4 [38 [2 [1 [0 | Threshold 0.5 x 1PE

Time Coarse Counter Time Fine Counter H.O. Hamming FEC
15-bit 9-bit L-bit 7-bit SNR 30 - -

Status Word . . . . . .

(3130292827262 2423222120 [19]18 [17[16 15|14 [13[12[11][10[9 [8 [7 [6 [5 [4 [3 [2 [1 [0 | Bandw|dth:64b/event,200 events/splll, >1$Sp|||+|ntersp||| per'lod,

Column ID Channel ID Lost Events Counter Hold-on Merged Events Counter SEU Counter | R.O. ~15 kbpS/pler, ~480 kb pS/COI Umn, < 20 MbpS fOf 1024 piXElS
5-bit 5-bit 7-bit 10-bit 4-bit 1-bit
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The GRAIN Readout ASIC: New Architecture

: : Digital Interfaces
Single Channel Architecture i

le—— CLK
e SCLK
-y MISO
ALCOR TIA FE Dual gain — «—— MOSI
with Common . @ ADC 0 (Time) e RST N
Gate Stage Discriminator in‘:zg:g:or Gain Threshold % «—— EN
Voltage ‘% GATE
—_t > > -
\ Signal buffer g, ADC 1 (Time) DUNE GRAIN 1024 > POWER_MODE
f ™S s N | JDATAO
/ Trigger L s [ > DATA1
c
Intg gain « e« DVDD
h 9ga e $————DeND
- = =
DAC: threshold I Hold-on and reset logic 2 £ —>< ADC 2 (Charge)
=
E)_dernal v I Coarse ToT Gray Counter —— S > _s Output logic
spill-start N 8 5
clock > @—”— Time to Analog > o > o ADC 3 (Charge)
<100 ps —
jitter Voltage
buffer .
Power Domains
«— AVFE_VDD
< ADC_DISC_VDD
e ABIAS VDD
Coarse ToT, Wilkinson ID, l«—— DPIXEL_VDD
channel ID, DP_VDD
- Integrator Gain ID < DDRIVER_VDD
l ASIC
e« DGND
e AVDD
Preliminary!
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The GRAIN Readout ASIC

The architecture of the chip includes 1024 mixed-signal
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Behavioural Model for Architecture Validation

The software can work both in interactive mode with a GUI, or in batch mode for attempting reconstruction of a moderate number of events.

. ) ) Alcor front-end L Blue: values of the charge Green: coarse +
Single PHE Timestamps Timestamps Orange: discriminator . . .
. output waveform integrals, ADC codes fine timestamp
Waveform numpy array txt file
Orange: discriminator
v v riSing edges, green: & python3  Window @ 9O B 3 ( ) 5 ss%m) Q & @ Tue21May 11:36:20
falllng edges DUNE - GRAIN Readout Chip Behavioral Simulatiyn - INTERACTIVE MODE - (INFN-TO VLS| Group)
G Interactive
m GUI Outputdata frame,
including ADC output
Configuration codes and identifiers bits
(Python dict or
JSON) v v Single photoelectron
current signal input
—) Batch Interactive waveform
Input time-of-arrival
TBRChain Lib of the incoming photons
Chip
Output
(Numpy
Array)
Chip
TBRChain Class > Output
+
_ Waveforms
Event Generation

Event Frontend simulation

Digitization simulation
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Design of Integrated Cryogenic Electronics for the Readout of the Silicon Photomultipliers of the DUNE experiment



The GRAIN Readout ASIC: Floorplan

Courtesy of Stefano Durando

* ALCOR: 32 - GRAIN: 1024 channels = 32 x 32 pixels matrix
On-pixel M8 SiPM

* Waferreticle size : 20.340 mm x 31.840 mm Test Structures inputs bump PADs
(Critical IP Blocks) L\
» Safe circuit size < 20 mm x 20 mm
* Hp: pixel channel pitch = 500 um FE+ iscs
- 32 x 500 um = 16 mm + EoC, Biasing and PADFrame
* Advanced packaging techniques:
Control
* ASIC bump bonded to interposer for SiPMs and PCB 2TACs ASLF)C;ZZZTS
board connection 2 Integrators - " \pes
*  On pixel PAD for SiPM
* Inter-column supply and ground PADs to reduce IR
drops

GRAIN ASIC : Pixel Channel
*  Pin out under discussion:

* Power Domains

* 3 Analog + 3 Digital
* Differential:
e 1Clk+3SPI
+ 1 trigger +2 Data
* Single ended
e 1Reset+1Global EN
+ 1 Low Power

Package Ois

bstrat
e RDL bump

Package

Flip-chip BGA working principle
Hsu, Hsin-Wu & Chen, Meng-Ling & Chen, Hung-Ming & Li, Hung-Chun & Chen, Shi-Hao.
(2012). On effective flip-chip routing via pseudo single redistribution layer. 1597-1602.

10.1109/DATE.2012.6176727.

ALCOR v1

GRAIN ASIC
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Time Digitization based on TAC + Wilkinson ADC 21

The Time-to-Digital converter inherited from the
ALCOR chip is based on a high-precision current ;

6300 Fast ramp
source that is steered to an integration capacitor | _ -
when triggered by the asyncronous -
discriminator. The integrated charge is then =003
digitized using a Wilkinson ADC. e

The dead-time of the channel depends on the E
ADC code (up to 2N with N = #bits, f,, = 320

Z - - . . -Z . 1
MHz) that |§ being digitized and_lt can be . T = T -  Thne

reduced using all the four TDCs in round-robin fetk

mode. The conversion time of the Wilkinson

ADC . t d . d d t_ f th Tf ADCfine : TDCtime—binning; ADCfine < ADCcut

INtroauces an excessive adea ime 1Tor the ine
(ADCfine - A-DCcut) ' TDCtime—binning; ADCfine > ADCcut
cameras of the GRAIN detector.
Code density method - ADC Codes Code density method - Reconstructed time interval | 31 | 30 | 29 ‘ 28 I 27 | 26 | 25 I 24 I 23 | 22 I 21 | 20 | 19 ’ 18 | 17 | 16 I 15 | 14 I 13 | 12 | 11 I 10 I 9 | 8 I 7 I 6 I 5 | 4 ‘ 3 | 2 I 1 | 0 |
50000 - ;
300001 Event Word
25000 40000 1 Column ID | Channel ID | TDC ID Coarse Counter Fine Counter
3 bits 3 bits 2 bits 15 bits 9 bits

1 20000 30000
S 15000 l -. 20000 Status Word

10000 - Lost e.w. Lost e.w. Lost e.w. Lost e.w. SEU

Column ID Pixel ID Lost event counter counter counter counter counter
5000 1 counter
TDC1 TDC2 TDC3 TDC4
0 3 bits 3 bits 6 bits 4 bits 4 bits 4 bits 4 bits 4 bits
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The GRAIN Readout ASIC: Faster ADCs

The new data converters for GRAIN uses

Behavioral Mixed Signal Model of the
a current-steering DAC producing

4"

m adcBusy counter new SAR ADC'
accurate current pulses that charges two =7 MATLAB ]
switched capacitors. JU L= LL} SIMULINK

1e-10
vin

A the beginning of the ! o -

on Cy s t e 194 .
conversion C, is tied to GND, Ll " e 2 &)

. . D J/.—
While C, is charged at V. W " . @4
D Out > > | m y
The system can be controlled L f’ ﬁﬂ” ] T o]
. Pulse start sample ’_; o outl > >Ps . L

by a faster SAR logic or by 1. ohare Lr} ol
a back-compatible : . N J_ '

1 1 p 1 r_’g o { e wsar. aﬁ logic C2_charge W’; Out T—»i > —— @
Wilkinson logic. | | " st — Lo o — T T i =0 ]
The current-steering i e | N I = = =
architecture is fast and o <comvlted = i

. NOT > o o out
more silent compared [ T i
H Max raising time (s)
to a switched — ; IDAG stting e (0 > (asctioar
|
IDAC Maximum code | - :: Oout % %c tD
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Bt £l N oD g
Vet T[> E:) . @—Pmmpleted
V:ﬂi—rl—- L,D Out \
nd S >
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The GRAIN Readout ASIC: Faster ADCs

Results of the system-level simulations:

[1] Residuals obtained converting values uniformly distributed
in the dynamic range of the ADC. (Between 0 and 0.5 * Vdd)

[2] Example of single data conversion for Vin =0.475 V. The
voltage across the two capacitors C1 and C2 is plotted against
the number of iterations

[3] Time-domain simulation of the digital control signals and of
the analog voltages across the capacitors during conversion.

» Group1
Sampling Clock Source 1.2
Start 0
» Busy 1
» FSM state
0.3273

Sample Switch
» Completed

Grounding_SW1

Grounding_SW2
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A synergic development of the ASIC for GRAIN & bRICH

Even though the signal structure is very different in the Alice bRICH and in the GRAIN
detector (very different duty cycle, dark count rate and bandwidth) after a careful
examination it emerges that the modifications needed to adapt the GRAIN ASIC to
the bRICH are limited:

* Additional global-VETO signal, with stochastic and deterministic jitter smaller
than 100 ps and duration in the order of 1 ns.

* Additional charge integration high-gain mode for performing photon counting
by integrating only the peak of the SiPM discharge signal

* One LVDS transceiver for each column operating at 320 MHz single data rate,
instead of one per chip.

The set of features that will not be exploited by the bRICH is limited as well:

* Power gating for reducing the power consumption during the cryogenic
operation

* Integration of the whole SiPM discharge pulse with bilinear response

*  Two 32-pixel columns unused, that can be disabled via the slow control
interface to reduce the power consumption

Perspectives for a RICH front-end based on the ALCOR architecture and possible synergies with other experiments



A synergic development of the ASIC for GRAIN & bRICH

Tri-state LVDS Transceivers

Because of the high dark count rate per pixel (about Er Er Er |_|Er |_|Er |_| |_|Er |_|Er s
. v v v v v y v v =
4 MHz at the end-of-life of the detector) the bRICH | | | ' 2
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transmission bandwidth. 'r;_j- -
On the contrary, in the GRAIN detector at DUNE the - v v v v v v v v v
number Of LVDS Iines ShOUId be St rongly ||m|ted W-EOC Logic W-EOC Logic W-EOC Logic W-EOC Logic W-EOC Logic W-EOC Logic W-EOC Logic W-EOC Logic
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. - ogic g i £ i - i - ic W R- ic ™ R- ic ¥ R- ic e 2
CFOSSIng the Cryostat Wa||S. I—P R-EOC Log = R-EOCLogic |<»{ R-EOCLogic [ R-EOCLogic [+ R-EOC Logic R-EOC Log R-EOC Log R-EOC Logic é
3
These tWO Constra|nts can be Sat'Sﬂed SlmUItaneOUS|y T:l-s:it; VDSTX T:ritfti- WVDSTX T:l-.s‘la:i- VDSTX T:ps::::- VDSTX T:b-s.t;t:- WVDSTX T:rs.t-at:- WVDSTX T:l-s.:at:‘ VDSTX T:l-it:t:_ WVDSTX c
by implementing tri-state LVDS transceivers that can -] jéa [ -] ﬁz L -] ga [ -] % L -] % - fé: . %z . éz
.- .- - - .- .- ™~ - ‘
operate with programmable time-division multiplexing : i : : : : : : :

of the access to LVDS link. < T
< = = Readout
. Foupled Multiplexing
In the GRAIN detector the Link ageregation: Driver ; Mode set via
1 number of LVDS feedthrough N . M,f)g( 288 VDS ch Is: Gront (Ngga Eineine ﬁg@i SPIslow CTRL
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| I;‘L:}f I Ilmlted! 320 M bpS / CO|umn (28 C) --I CrossSectionulIDiIIemntiaanir
S
f f‘l = » Very high cost of high- N . . S
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A synergic development of the ASIC for GRAIN & bRICH 24b

(DUNE GRAIN)

Current DAC for fine Automatic gain-switching
gain adjustment based on for bilinear response,
current mirroring for wider dynamic range

Charge Integration
The GRAIN ASIC features a charge integration with a

current-mode input coming from the regulated (ALICE bRICH)
common-gate very frontend stage. Current-mode signal Integrator branches with Fixed-value very high gain
o o e
e After being adjusted by a programmable DAC
based on current mirrors for precisely tune / l \
the gain, the signal is integrated on a i\ -
capacitor charged by an array of “ / e j EN2 - 3 3 . 3 .
transconductors. M :| 2 N N
~ / Gain_fine_adj e
* When the voltage across the capacitor j /N : ) w1 v
increases above an adjustable threshold, . ~ K| — K e . . 2 A
some transconductors are disabled in order e '@ . :} 2 12 1 @ w2 1@ w3
to reduce the gain following a bi-linear : \C g; ~ ~
response, thus widening the dynamic range. NIp4 current ADC 1ou
\\: 05 K ) {ADC_OUT >
* Inthe ALICE-3 bRICH these features are not N7 —
exploited, instead, a fixed branch is used § _:\ Jd o
witch a much higher gain, in order to l oj?
A4

match the ADC input dynamic range, 4
with a very fast integration gate.



Alternatives Approaches for high DCR: selective readout 27

An alternative solution is to introduce an additional ASIC between the [pGBT transmission links and the readout ASIC, with the role of clustering the time-of-
arrival measurements, discriminating the dark count an forwarding to the counting room only the meaningful data. This introduces an additional cost and it is
difficult to optimize the modularity of this data concentrator in order to avoid an additional communication bus between data concentrators, considering the
distribution of the rings of Cherenkov light. In alternative, a distributed ToA histogram can be computed and then the RX link of the IpGBT can be used to request
a selective readout to the ASICs. In this case the complexity and the latency increase considerably, therefore much larger on-chip SRAMs are needed.

Dedicated data-concentrator ASIC for selective readout Clustering and then selective readout requested through the IpGBT RX channel
Additional high-bandwidth ASIC required, difficult to find a modularity
. . . . . Very large amount of SRAM memory needed
that allows the clustering of the timestamps without inter-chip e )
N inside the ASIC for buffering the events
communication.
—
‘3" l j Timeo:)fArri\j;I(ns)
B TIIIX] B > = =
\ On-chip SRAM

&




Conclusions

The Alice-3 bRICH is a challenging system because the very high DCR of the SiPMs, requiring up to 7 — 10 Thit/s of readout
bandwidth from the detector to the counting room. The system is bandwidth-limited and, ultimately, limited by the response
time of the sensors.

The shaping time, signal processing time and data conversion time of the pixels inside the readout ASIC with proper
derandomization buffers and VETO gates can withstand the event rate.

The 1024-channel ASIC currently being designed in Torino for the GRAIN detector at DUNE, with relatively small modifications, can
therefore fit the application if the DCR estimation of 4 MHz is realistic.

The synergy could represent a great opportunity for reducing the cost, reducing the development risks and increasing the chip
functionalities and performance, as a consequence of the additional resources.
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