ALICE 3 RICH FEE preliminary module concept

Ciro Bermúdez Márquez, Daniel Durini, Julio Hernández, <u>Tivadar Kiss</u>, Flavio Loddo, José de Jesús Rangel, Jose M. Rocha-Perez, Sergio A. Rosales-Nunez, Miguel Velázquez de la Rosa

On behalf of the ALICE-3 RICH Group

ALICE current system layout dimensions

RICH barrel

TOTAL of 24 rings: each with 36 segments (with dimensions of 15 x 20 cm² perpendicular to the particle beam)

The first approach for front-end electronics proposed is modular, 4-side tileable, forming FEE "super-modules", placed on and completely filling each of the 36 segments (with an approx. area of 15 x 20 cm²) per ring, each placed perpendicularly to the origin of heavy-ion collisions.

RICH proposed system layout

RICH Space Dimensions

Ring 0

Barrel dimensions: Radius 90 cm to 120 cm Space in between: 30cm

The ring consists of 36 segments Goal dimension specification for the 36 segments (supermodules) per ring: 15 x 20 cm²

RICH FEE Functional Diagram

ALICE-3 RICH FEE: SiPM array

Fig. 2: SiPM die and ALCOR V3 general connection with temperature sensor.

ALICE-3 RICH FEE: Preliminary Assembly Proposal

E E E E

16.67

The proposed modular assembly includes:

- a SiPM-tile, which comprises an array of 8 x 8 SiPMs \rightarrow 64 SiPM channels
- a SiPM-module, constituted by 3 x 3 SiPM-tiles -> 576 SiPM channels
- a SiPM super-module made up of 3 x 4 SiPM-modules → 6,912 SiPM channels

SiPM Super-module size must be equal area of each of the 36 segments of a RICH mechanical ring \rightarrow 15 x 20 cm²

SiPM SiPM

16.67 mm

SiPM Tile → 64 SiPM channels

ALICE-3 RICH FEE: Preliminary Assembly Proposal

SiPM	I SiPN	d SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SiPM	SIPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM			
SiPM	I SiPN	u sipm	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SiPM	SiPM	SIPM	SIPM	SiPM	SIPM	SIPM			
SiPM	I SiPN	u SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SiPM	Tile 1	T 'I 0	
SiPM	i sipn	M SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	The I	Tile 2	Tile 3
SiPM	I SiPN	u SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM			
SiPM	SiPN	u SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SIPM	SIPM	SiPM	SIPM	SiPM			
SiPM	SiPN	vi SiPM																								
SiPM	SiPN	M SiPM	SIPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM			
SiPM	SiPN	d SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	T 'L A		
SiPM	SiPN	d SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	lile 4	Tile 5	Tile 6
SiPM	SiPN	d SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM			
SiPM	SiPN	M SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM			
SIPM	I SIPN	M SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM			
SIPM	I SIPN	M SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM			
SIPM	I SIPN	M SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM			
SIPM	I SIPN	u sipm	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	lile /	Tile 8	Tile 9
SiPM	I SiPN	d SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM			
SiPM	SiPN	u SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SiPM			
SiPM	SiPN	u SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM	SIPM	SIPM	SiPM	SIPM	SiPM			
SiPM	SiPN	M SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM			
SiPM	I SiPN	M SiPM	SiPM	SiPM	SIPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SiPM			d by 2 y 2
SiPM	SiPN	u sipm	SiPM	SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SiPM	SIPIVI-MOOL	ie, constitute	eu by 3 x 3
SiPM	SiPN	M SiPM	SiPM	SiPM	SIPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SiPM	SiPM-tiles	\rightarrow 576 SiPM	channels
SiPM	SiPh	M SiPM	SiPM	SiPM	SiPM	SiPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM	SIPM			

ALICE-3 RICH FEE: Preliminary Assembly Proposal

Module 1 576 channels	Module 2 576 channels	Module 3 576 channels	
Module 4 576 channels	Module 5 576 channels	Module 6 576 channels	
Module 7 576 channels	Module 8 576 channels	Module 9 576 channels	
Module 10 576 channels	Module 11 576 channels	Module 12 576 channels	

Challenges:

- 1. The mandatory solution size requirement is 20 cm x 15 cm.
- . The maximum thickness of the solution is 30 mm.
- 3. The solutions must operate in a cryogenic environment of -40° C.
- I. The solutions must operate in a high-radiation environment.
- 5. We have only preliminary information on the ALCOR specs.

SiPM super-module, constituted by 3 x 4 SiPM modules \rightarrow 12 x 576 = 6,912 SiPM channels

Disclaimer: the total number my slightly change by fine tuning the pitch of the sensors.

200 mm

Cryogenic chamber -40°C

Ongoing developments started from the silicon-proven architecture of the ALCOR x32 channel SiPM readout ASIC:

Feature	ASIC for EIC dRICH	ASIC for GRAIN at DUNE			
Channel modularity	64 pixels (8 columns)	1024 pixels (32 columns)			
Measurements	ToĄ, ToT	ToA, ToT, Charge Integral			
VETO Signal	YES – Global, external	YES – Global, internally generated or ext.			
Time-of-Arrival resolution RMS	\approx 150 ps with C _{IN} = 100 pF	≈ 50 ps (target)			
Time-over-Threshold resolution RMS	≈lns	≈lns			
Charge integration response	N.A.	Bilinear (2 gain values) + peak sensitive			
Charge integral resolution	N.A.	9 bit: 10 codes/phe; 3 codes/phe			
Charge integral dynamic range	N.A.	[1-25 phe]; [25-150 phe]			
Power density	10 mW/channel [AVG]	10 mW/channel [AVG]			
Silicon die size	4.95 x 3.78 mm²	≈ 20 x 20 mm ²			
Operating Temperature	300 K	77 K-300 K			
Number of LVDS Tranceivers	8 (one for each column)	32 (one for each column)			
LVDS Transceiver Speed	320 Mbps SDR or 640 Mbps DDR	320 Mbps SDR			
Clock Frequency	310 -325 MHz	310 – 325 MHz			
Power gating mode in low duty cycle	No	Yes			

See Valerio Pagliarino's presentation "Perspectives for a RICH front-end based on the ALCOR architecture and possible synergies with other experiments" <u>5th ALICE UPGRADE WEEK in Kraków (7-11 October 2024): Overview · Indico (cern.ch)</u>

We have investigated the following read-out schemes based on different present and future ALCOR ASICs:

Existing:

• 32-ch ALCOR_v2: not considered

Existing:

- 64-ch ALCOR_v3 with 320 Mb/s data lines
- 64-ch ALCOR_v3 with 640 Mb/s data lines

In development:

- 1024-ch ALCOR with 320 Mb/s data lines
- 1024-ch ALCOR with 320 Mb/s data lines
- Using of additional ECON-D ASICs for ZS and data aggregation

Study No.1: Read-out scheme based on

ALCOR_v3 with 640 Mb/s data lines

ALICE-3 RICH FEE: Preliminary Read-out Concept based on the ALCOR_v3 ASIC

How many FEE components do we need?

In a supermodule...

- We have 6 912 SiPMs in a Suermodule...
- ALCOR_v3 has 64 analog input channels
- \rightarrow 108 ALCOR v3 ASIC is needed in a Supermodule
- 1 ALCOR v3 has 8 digital output lines running at 640 Mb/s.
- Using the lpGBT in 10.24 Gb/s & FEC12 configuration, 12 input e-links are available at 640 Mb/s speed in an IpGBT ASIC to read out the ALCOR(s).
- \rightarrow 72 IpGBT ASICs are required in a Supernodule
- A VTRX+ optical transceiver
- \rightarrow 18 VTRX+ modules are no

6912 analog signals + VIN DAC, GND

SiPM

6 912 pcs

temp. sensor

Total number of FE components foreseen...

- We have 24 rings and 36 sectors, so we have 864 Supermodules
- Components needed:
 - ALCOR v3: 864 x 108 = 93 312 pcs
 - **IpGBT ASIC:** 864 x 72 = 62 208 pcs
 - VTRX+ module: 864 x 18 = 15 552 pcs

Huge numbers of components, very high interconnection density \rightarrow challenging implementation

1. Let's see if it is possible... (next slides)

2. RICH is very much interested in new versions of ALCOR (or else) to reduce the initial number of data lines

mod	ule has 4 TX and	1 RX lines			Input eLinks (up-link)													
		1 Invinces		Up-link bandwidth [Gb/s]					5.	12			10.24			.24		
eeu ii	i a supermouule			FEC co	FEC coding			FEC5			FEC12			FEC5			FEC12	
				Bandw	vidth [Mb/s	s]	160	320	640	160	320	640	320	640	1280	320	640	1
				Maxim	um numbe	er	28	14	7	24	12	6	28	14	7	24	12	Γ
	SPI (or I ² C) control DATA OUT									DAG	Com					\smile	
→	ALCOR v3 ASIC 108 pcs	640 Mb/s e-links CLK, FCMD	IpGB ASIC 72 pc	ST	high- -speed 10 Gb/s	Opt opt moc 18	RX+ tical dules pcs		optical 4 TX + 1 F	link x	Read (Fut	Comr I- out U ture CF Q serve	non Inits RU) ers					

280

ALICE-3 RICH FEE: Read-out, Fast and Slow Control Segmentation (ALCOR_v3)

Optical

A VTRX+ optical module can handle 4 uplinks and 1 downlink

- It is forwarded electrically to 1 lpGBT only → only 1 of the 4 lpGBT ASICs connected can receive downstream data.
- This ,master' IpGBT ASIC has to do the Fast Control and configuration of the 6 ALCORs, as well as the Slow Control of that segment of the FEE.

What is behind 1 downlink?

- 1x VTRX+ module (4x TX, 1x RX)
- 4x lpGBT ASIC (1x ,master' + 3x ,slave')
- 6x 64-ch ALCOR_v3 front-end ASIC
- 384 SiPMs (analog channles)

This is the possible level of granularity for the fast-control and slow-control of the FEE.

	Input eLinks (up-link)											
Up-link bandwidth [Gb/s]		5.12 10.24										
FEC coding		FEC5			FEC12			FEC5		FEC12		
Bandwidth [Mb/s]	160	320	640	160	320	640	320	640	1280	320	640	1280
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6

ALICE-3 RICH FEE: Stack of PCBs with board-to-board connectors

ALICE-3 RICH FEE: ALCOR_v3 with 640 Mb/s data lines

20 cm ALCOR v3 Board 108 ALCOR v3 in a matrix of 12 x 9 no trial placement has been done yet, looks not to be possible...

108 x ALCOR_v3 /board

ALCORs can be placed, but...

Connectors: 28x 120 pin, 0.4 mm
 e.g. Molex SlimStack Connector (SSC)

No. of connector pins needed between the SiPM PCB and the ALCOR PCB:
- signals: ~ 6 912 !
- GND: many! (up to thousands to avoid xtalk)
- LV: hundreds!

No. of connector pins available: ~ 6 720 (issue no.1 - Looks to be a showstopper for this concept...)

- No. of outgoing e-Links: 108 x 8 = 864
- Power dissipation on this side
 P_{ALCOR} = 108x 64x 12 mW = 84 W /board, max

Is it routable?

Maybe... further study is needed if concept is not dropped. Cross-talk, noise, etc.

15 cm

ALICE-3 RICH FEE: ALCOR_v3 with 640 Mb/s data lines

	←					20 cm				>
	10 1000 0000	1C1_1	101_2	IC1_3	IC1_4	IC1_5	IC1_6	101_7])]	ICI_9
		1C2_1	IC2_2 IC3_2	IC2_3	IC2_1 IC3_4	IC2_5	IC2_6	IC2_7 IC3_7	1C2_8	1C2_9 1C3_9
		IC4_1	IC4_2	IC4_3	IC4_4	IC4_5] IC4_6	IC4_7	IC4_8	IC4_9
15 cm			<u>IC5_2</u>		<u>, IC5_4</u>		1 <u>C5_6</u>			
			I <u>C6_2</u>			I <u>C6_5</u>	ICS_S		, <u>icc_e</u>])	I <u>C6_9</u>
		IC7_1	IC7_2	IC7_3	IC7_4	1 <u>C7_5</u> •	IC7_6	IC7_7	IC7_8	IC7_9

72x lpGBT ASICs /board

Components can be placed, but:

- No. of eLinks from the ALCOR board: ~ 864
- No. of connector pins needed between the ALCOR PCB and the lpGBT & VTRX+ PCB:
 - signals + GND: 3x 864 = 2 592 pins
 - LV delivery: hundreds (see later)

No. of connector pins available: ~ 3 360

Power dissipation on this side
 P_{IpGBT} = 72x 0.5 W, max = 36 W /board, max

Is it routable?

Maybe on 16 layers... further study is needed if concept is not dropped.

ALICE-3 RICH FEE: ALCOR_v3 with 640 Mb/s data lines

18x VTRX+ modules /board w/ long pigtail cables (up to 4 m!)

Components can be placed

- 10 Gb/s high-speed lines (90x) go to the other side via carefully designed diff. vias
- Power dissipation on this side
 P_{tot} = 18x 0.24 W, max = 4.3 W /board, max.

*	* *	
_{LV} (lpGBT, 72 pcs)	= 30 A, max	@1.2V
	(24 A <i>,</i> typ	@1.2V)
_{LV} (VTRX+, 18 pcs)	= 1.6 A	@ 2.5V
	= 0.5 A	@ 1.2V

P (IpGBT+VTRX+)_{tot, max} = 36+4.3 W = **41 W /board**

T amb: -40 °C

ALICE-3 RICH FEE: LV Supply and Power Dissipation (ALCOR_v3_640 Mb/s)

LV Current Supply

Current consumption of the FEE components in each Supermodule...

I _{LV} (ALCOR_v3, 108 pcs)	1012 mW /ch (ALCOR_v3)							
	= 70 A, max	@1.2V						
I _{LV} (IpGBT, 72 pcs)	= 30 A, max	@1.2V						
I _{LV} (VTRX+, 18 pcs)	= 1.6 A = 0.5 A	@ 2.5V @ 1.2V						

The total 1.2V current consumption of each Supermodule sums up to ~ 100 A

- thick cables need space ... no option
- Local DC/DC conversion is a must
- additional power board in the PCB stack will be needed
- a single rad-hard "bPOL48V" DC/DC converter has an
 - $I_{out, max}$ = ~ 10..15 A (w/ propoer cooling)
- We would need a *very high number of DC/DC converters* in each Supermodule... (Issue No. 2a)
- high density board-to-board connectors (e.g. this SlimStack connectors) can deliver 0.3..0.5A /pin → an additional hundreds of pins are needed for LV delivery (Issue No. 2b)
- the even distribution of the current on hundreds of connector pins on multiple connectors can not be guaranteed...

This looks to be a showstopper with the present ALCOR_v3 ASIC and direct IpGBT read-out.

Power dissipation /cooling										
Dissipation of the FEE co	mponents in	n a Supermodule								
P (ALCOR_v3, 108 pcs)	= 84 W,	max								
P (lpGBT, 72 pcs)	= 36 W,	max (see previous slides)								
P (VTRX+, 18 pcs)	= 4.6 W,	, max (see previous slides)								
120130 W /Supermodule										
*	*	*								
In this scheme the <i>total</i> of cryogenic vessel (I.e. all 8	<i>dissipation</i> o 364 Supermo	of the FEE compnents in the odules, 24 rings x 36 segment	s)							
125 W x 864 = 110 kW , n	nax.									
Cooling down the cryoger 110 kW is a challange, if f	nic vessel to easible.	-40 °C while heating it with								
To be further evaluated but the large FEE dissipation can also be a showstopper for this scenario with the ALCOR v3.										

ALICE-3 RICH FEE: ASICs need and Cost estimations

FEE Con	nponents Cost (e	stimations	5)		
ASIC cor	mponents need:				
•	ALCOR_v3:	864 x 108	= 93 312 pcs	? CHF/ea	= ?
•	lpGBT ASIC:	864 x 72	= 62 208 pcs	25 CHF /ea	= 1.56 MCHF
•	VTRX+ module:	864 x 18	= 15 552 pcs	140 CHF /ea	= 2.18 MCHF
•	DC/DC:	864 x ?			
Connect	ors				
•	Molex SSC	864 x 60	= 50k+ pcs	< 2 CHF & 50	<= < 0.1 MCHF
PCB (ba	re)				
•	est.	864 x 4	= 3 500 pcs	~ 300 CHF /ea	a = ~ 1 MCHF

DAQ /Common Read-out Units	(of that time):	
lpGBT uplinks:	~ 62 000	
CRUs with 48 inputs:	~ 1 300	also looks not acceptable

Study No. 2: Read-out scheme based on

ALCOR_v3 with 320 Mb/s data lines

the same, but the number of IpGBT and VTRX+ components (and CRUs) can be halved...

ALICE-3 RICH FEE: Read-out, Fast and Slow Control Segmentation (ALCOR_v3)

Optical

A VTRX+ optical module can handle 4 uplinks and 1 downlink

- It is forwarded electrically to 1 lpGBT only \rightarrow only 1 of the 4 lpGBT ASICs connected can receive downstream data.
- This ,master' IpGBT ASIC has to do the Fast Control and configuration of the 6 ALCORs, as well as the Slow Control of that segment of the FEE.

- VTRX+ module (4x TX, 1x RX) 1x
- lpGBT ASIC (1x,master' + 3x,slave') 4x
- 12x 64-ch ALCOR v3 front-end ASIC
- 768 SiPMs (analog channles)

This is the possible level of granularity for the fast-control and slow-control of the FEE.

	Input eLinks (up-link)												
Up-link bandwidth [Gb/s]			5.	12			10.24						
FEC coding		FEC5			FEC12			FEC5			FEC12		
Bandwidth [Mb/s]	160	320	640	160	320	640	320	640	1280	320	640	1280	
Maximum number	28	14	7	24	12	6	28	14	7	24	12	6	

ALICE-3 RICH FEE: ALCOR_v3 with 320 Mb/s data lines

36x IpGBT ASICs /board

- Components can be placed, but:
- No. of eLinks: ~ 540
- No. of connector pins needed between the ALCOR PCB to the IpGBT PCB remains the same:
 - signals: ~ 6 912
 - GND: many (up to thousands)
 - LV hundreds

No. of connector pins available: 3 360 or 6 720, max, if we double the connectors (issue no.1)

Power dissipation on this side:
 P_{IpGBT} = 36x 0.5 W, max = 18 W /board, max

Is it routable? Looks feasible...

TOP side

ALICE-3 RICH FEE: ALCOR_v3 with 320 Mb/s data lines

)	()		(<u>(</u>	(
			(<u> </u>		(
_		_		E		
				E		
				=		
	()				((
	(

9x VTRX+ modules /board w/ long pigtail cables (up to 4 m)

Components can be placed

- 10 Gb/s high-speed lines (45x) go to the other side via carefully designed diff. vias
- Power dissipation on this side: P_{tot} (VTRX+) = 9x 0.24 W, max = 2.2 W /board, max.

* * * * I_{LV} (IpGBT, 36 pcs) = **15 A, max @1.2V** (12 A, typ **@1.2V**) I_{LV} (VTRX+, 18 pcs) = 0.8 A **@ 2.5V** = 0.25 A **@ 1.2V**

P (lpGBT+VTRX+)_{tot, max} = 18+2.2 W = **21 W /board**

T amb: -40 °C

BOTTOM side

ALICE-3 RICH FEE: LV Supply and Power Dissipation (ALCOR_v3_320 Mb/s)

LV Current Supply				
Current consumption of the	FEE componer	nts in each Supermodule		
I _{LV} (ALCOR_v3, 108 pcs)	1012 mW /c = 70 A, max	h (ALCOR_v3) @1.2V		
I _{LV} (lpGBT, 36 pcs)	= 15 A, max	@1.2V		
I _{LV} (VTRX+, 9 pcs)	= 0.8 A = 0.25 A	@ 2.5V @ 1.2V		
The total 1.2V current consu sums up to ~ 85 A	Imption of eac	h Supermodule		
- Supplying 85 A instead o demanding if feasible	of 100 A /Super	module is still very		
- We would need a very h in each Supermodule	<i>igh number of</i> (Issue No. 2a)	DC/DC converters		
 high density board-to-board connectors (e.g. this SlimStack connectors) can deliver 0.30.5A /pin → an additional hundreds of pins are needed for LV delivery (Issue No. 2b) 				
 the even distribution of the current on hundreds of connector pins on multiple connectors can not be guaranteed 				
The high LV current need looks to be a showstopp	d dominated per for this sc	by the ALCORs still enario with ALCOR_v3.		

Power dissipation /cooling			
Dissipation of the FEE components in a Supermodule			
P (ALCOR_v3, 108 pcs)	= 84 W, max		
P (lpGBT, 36 pcs)	= 18 W, max (see previous slides)		
P (VTRX+, 9 pcs)	= 2.3 W, max (see previous slides)		
100110 W /Supermodule			
*	* *		
In this scheme the <i>total dissipation</i> of the FEE compnents in the cryogenic vessel (I.e. all 864 Supermodules, 24 rings x 36 segments)			
105 W x 864 = 91 kW , max.			
Cooling down the cryogenic vessel to -40 °C while heating it with 90 kW is still a challange, if feasible. (Issue No. 3)			
To be further evaluated but the high dissipation dominated by the ALCORs can still be a showstopper for this scenario with ALCOR_v3.			

ALICE-3 RICH FEE: Conclusion with the ALCOR_v3 ASIC

Our conclusion:

For the RICH FEE, the present **64-ch ALCOR_v3** is not a feasible option (neither with 640 Mb/s nor with 320 Mb/s data lines (e-links))

Study No. 3: Read-out scheme based on

1024-ch ALCOR with 320 Mb/s data lines

ALICE-3 RICH FEE: Preliminary Read-out Proposal Based on an 1024-ch ALCOR

The new 1024-ch ALCOR

- will have 32 output data lines that correspond to 32 columns with 32 pixels in each column
- Unused columns can be disabled
- Moreover, columns can be multiplexed to a lesser number of output lines, by a factor of powers of two
- With 32 columns, the no. of the output lines can be 32, 16, 8, 4, 2, 1, reducing the available bandwith for one column (or one pixel) proportionally

(for more details see Valerio's presentation)

ALICE-3 RICH FEE: 1024-ch ALCOR and lpGBT with FEC12

31

ALICE-3 RICH FEE: 1024-ch ALCOR and IpGBT with FEC5

Input eLinks (up-link) Up-link bandwidth [Gb/s] 5.12 10.24 FEC12 FEC5 FEC12 FEC5 FEC coding 28 x Data lines (320 Mb/s) Bandwidth [Mb/s] 160 640 160 320 640 320 640 1280 320 640 1280 320 896 analog channel Maximum number 28 14 7 24 12 6 28 7 24 12 14 6 1024-ch IpGBT ALCOR FEC5 FCLK + FCMD No. of components in a Supernodule: With 28 data lines (no multiplexing) ٠ **x2** the 1024-ch ALCOR can handle 28 x Data lines (320 Mb/s) 896 pixels 896 analog channel 1024-ch IpGBT 6 912 pixels / 896 = 7.7 ТΧ • ALCOR FEC5 → 8 ALCOR / Supermodule RX FCLK + FCMD ТΧ VTRX+ Optical 2 x 8 x 8 x 1024-ch ALCOR **IpGBT** VTRX+ ТΧ 28 x Data lines (320 Mb/s) ТΧ 896 analog channel 1024-ch IpGBT This can be either: ٠ ALCOR FEC5 - 7x 28 lines + 1x 20 lines, or FCLK + FCMD - 8x 27 lines What is behind 1 downlink? ٠ Reading-out 8 ALCORs, all with 28 VTRX+ (4x TX, 1x RX) data lines (lpGBT FEC5) we can have 1x 28 x Data lines (320 Mb/s) 7 168 pixels in a Supermodule lpGBT (1x ,master', 3x ,slave') 4x 896 analog channel 1024-ch IpGBT ALCOR 1024-ch ALCOR 4x FEC5 FCLK + FCMD up to 3584 SiPMs (analog channles) 32

28 columns of an ALCOR is read out, 4 are disabled

This is the possible level of granularity for the fast-control and slow-control of the FEE.

ALICE-3 RICH FEE: 1024-ch ALCORs and IpGBTs on the same board

8 ALCOR (1024-ch) + 8 lpGBT could be placed on the *same* board

- Components can be placed, but..
- No. of connector pins needed between the SiPM PCB and the (ALCOR + IpGBT) PCB remains the same:
 - analog signals: ~ 6 912

- GND: many (up to thousands to avoid xtalk)

Even with doubling the number of connectors the number of the available pins (~ 6 720) is not enough (issue no.1, still a showstopper...)

No. of eLinks: ~ 224 (all PCB-internal)

• Power dissipation on this side:

P_{ALCOR} = 8x 10 W, max = **80 W /board**, max P_{IpGBT} = 8x 0.5 W = **4 W /board**, max

TOP side

ALICE-3 RICH FEE: 1024-ch ALCORs and lpGBTs on the same board

2x VTRX+ modules /board

w/ long pigtail cables (up to 4 m)

- Lot of space for overlappig cables, service electronics (e.g. including some of the DC/DC converters)
- 10 Gb/s high-speed lines (45x) go to the other side via carefully designed diff. vias
- Power dissipation on this side:
 P_{tot} (VTRX+) = 2x 0.24 W = 0.5 W, max: negligible

* * *

Current need & dissipation:

I_{LV} (ALCOR, 8 pcs) = **70 A**, max @1.2V I_{LV} (IpGBT+, 8 pcs) = 3.4 A @ 1.2V

P (IpGBT+VTRX+)_{tot, max} = 84 W+4 W = **88 W /board**

T amb: -40 °C

BOTTOM side

ALICE-3 RICH FEE: Most critical: the analog board-to-board connections

• Signal integrity issues (cross-talk, noise)

ALICE-3 RICH FEE: Eliminating the connectors...

ALICE-3 RICH FEE: 1024-ch ALCORs on the bottom of the SIPM board...

The 1024-ch ALCORs moved to the bottom of the SiPM board....

8x lpGBT ASICs + 2x VTRX+ /board

- Components placement is not a problem
- Only digital lines (e-Links) go through the connectors.
- No. of e-Links coming from the "SiPM+ALCOR" board: 8x 28 = 224, max.
- No. of connector pins needed between the "SiPM & ALCOR" and the "IpGBT & VTRX+" boards:
 - e-Link signals + GND: 3x 224 = 672
 - LV for the SiPM+ALCOR board: hundreds...
- No. of connector pins available: up to a few thousands... (see before)
- Power dissipation of the "lpGBT & VTRX+" board :

 $P_{IpGBT} + P_{VTRX+} = < 5W$ /board

challenging.

ALICE-3 RICH FEE: LV Supply and Power Dissipation with the 1024-ch ALCOR

LV Current Supp	ly] [Pow
Current consumption of	the FEE compone	nts in each Supermodule		Dissip
I _{LV} (ALCOR_v3, 8 pcs)	1012 mW /c	h (1024-ch ALCOR)		P (102
I _{LV} (lpGBT, 8 pcs)	= 70 A, max = 3.4 A, max	@1.2V		P (IpG P (VTF
I _{LV} (VTRX+, 2 pcs)	= 0.18 A = 0.06 A	@ 2.5V @ 1.2V		8590
The total 1.2V current co sums up to ~ 75 A	onsumption of eac	h Supermodule		
- Supplying 75 A /Supe - We would need a hig	ermodule is still ve ah number of DC/I	ry demanding, if feasible <mark>DC converters (e.g 6, min)</mark>		In this cryog
in each Supermodule - high density board-to connectors) can deliv	e (Issue No. 2a) o-board connector ver 0.30.5A /pin -	s (e.g. this SlimStack → an additional hundreds of		105 W Coolir
pins are needed for L - the even distribution on multiple connecto	LV delivery (Issue N of the current on ors can not be gua	<pre>lo. 2b) hundreds of connector pins ranteed</pre>		78 kW
The high LV current n	eed dominated	by the ALCORs are still	[domi

ver dissipation /cooling pation of the FEE components in a Supermodule... = 84 W, max (remians high!) 24-ch ALCOR, 8 pcs) = 4 W, max (see previous slides) iBT, 8 pcs) RX+, 2 pcs) = 0.5 W, max (see previous slides) 0 W /Supermodule s scheme the total dissipation of the FEE compnents in the enic vessel (I.e. all 864 Supermodules, 24 rings x 36 segments) V x 864 = **78 kW**, max. ng down the cryogenic vessel to -40 °C while heating it with V is still a challange, if feasible. (Issue No. 3) e further evaluated... but the high dissipation inated by the ALCORs can still be challenging.

But Issue No. 1 (with the connectors) is solved at least, by omitting the connectors between the SiPMs and the ALCORs. (this eliminates >> 7000 signal pins there

ALICE-3 RICH FEE: ASICs need and cost estimations with 1024-ch ALCOR

DAQ /Common Read-out Units (of that time):			
lpGBT uplinks:	~ 6 912		
CRUs with 48 inputs:	~ 144	also looks more affordable	

ALICE-3 RICH FEE: Further considerations /1

1. Multiplexing columns of the 1024-ch ALCOR to their digital output lines

- All 32 columns (all 1024 channels) would be available in ALCOR, but only 16, 8, 4, 2, or 1 output data lines would be used depending on the ,occupancy' of the data channels.
- To make use of this (i.e. to spare with link components) this has to be decided *in advance*, design the PCBs accordingly, then it is frozen... → a safe decision has to be made.
- With 1024 ALCOR channels available, only 7 ALCORs (instead of 8) would be needed in a Supermodule (not a big reduction...)
- The link components (lpGBT and VTRX+ ASICs, CRUs...) could be significantly reduced (by a factor of 2, 4, 8, 16... etc, depending on the multiplexing factor)
 - it can reduce cost, but
 - it does not help in the challenge of LV power supply and dissipation of the FEE that are *technically* the more critical issues

ALICE-3 RICH FEE: Further considerations /2

2. Using a rad-hard data concentrator ASIC (e.g. ECON-D)

- ad-hard ASICs with *e-Link inputs* and *e-Link outputs*
- By *zero suppression* it can reduce data volume and aggregate data of multiple input links to lesser number of output links (before the IpGBTs)
- In ALICE, we will use ECON-D ASICs on the coming FoCal Pads read-out concentrator boards (Run 4), so we will get experience with them
- They can help in reducing the number of the link components (e.g lpGBTs), but they themselves are additional components, designing the FE PCBs will not be easier...

ALICE-3 RICH FEE: PCB Technology Required (Preliminary)

Challange level:

Routing-out of the differential signal pairs of the **0.5 mm pitch BGA** ASICs (lpGBT, 1024-ch ALCOR) is the determining factor in the required PCB technology

The following PCB parameters are foreseen:

layer count

• ~ 16 layers (board thickness is not critical)

track/clearence

• down to 60..70 um

thinnest dielectric layer

• down to 60..70 um

vias/microvias

• microvias: 0.25/0.12 mm (diameter/hole), or smaller...

Potential PCB manufacturers exist:

Exception PCB, Somacis, others...

ALICE-3 RICH FEE: Summary and Take-away Message

The first concept is based on the

- array of 2x2 mm SiPMs
- the ("already 2-years old") 64-channel ALCOR_v3 digitizer ASIC,
- direct read-out with rad-hard IpGBT optical links

Newer verisons of ALCOR is foreseen with preliminary specifications

- 1024 input channels
- to be followed up and participate in the requirements specification

The feasibility study of this concept based on the 1024-ch ALCOR, that consist of

- a conceptual design,
- simulations, and
- trial implememntations

has been started.