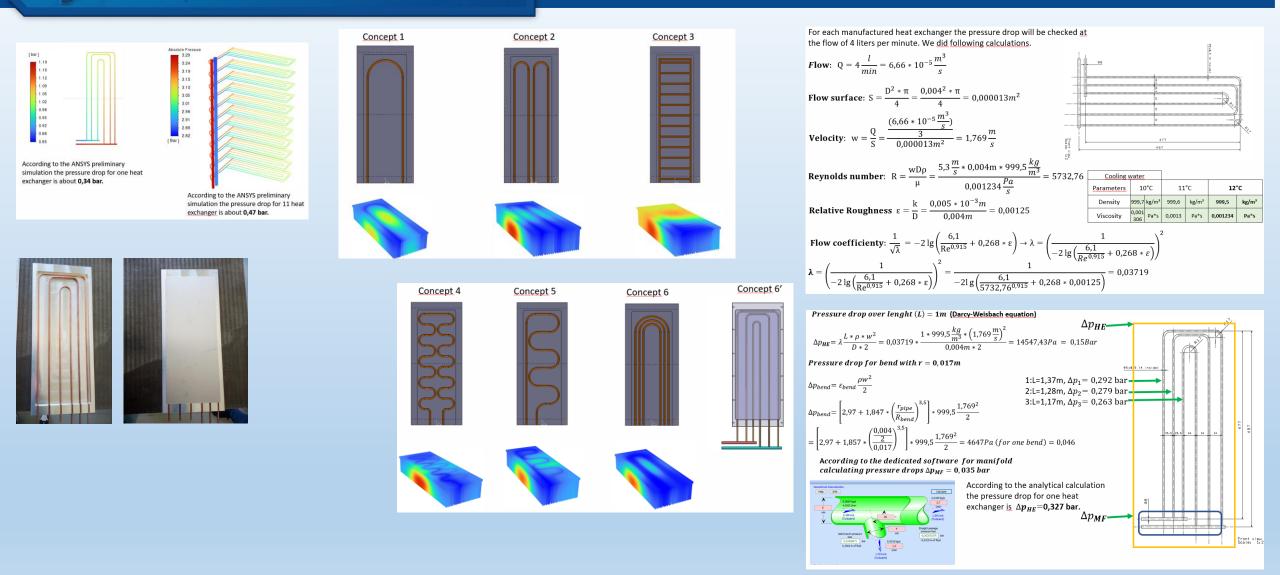
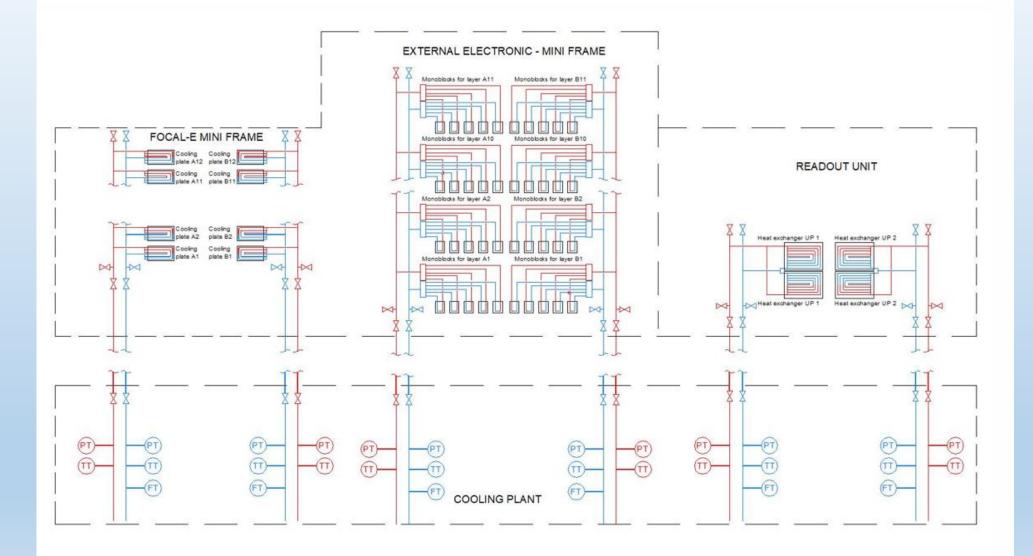

IFJ PAN in-kind contribution to the FoCal-E cooling system with respect to the quality assurance based on IFJ PAN projects experience

The Division of Scientific Equipment and Infrastructure Construction (DAI)

IFJ PAN – in-kind contribution to FOCAL COOLING SYSTEM RESPONSIBILITY AND SCOPE OF WORK



The Henryk Niewodniczański Institute of Nuclear Physics


Polish Academy of Sciences

FOCAL-E CONCEPTUAL WORK

PRELIMINARY P&ID DIAGRAM FOR FOCAL

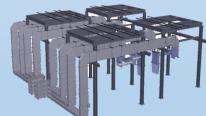
PRELIMINARY RISK Analysis DIAGRAM FOR FOCAL

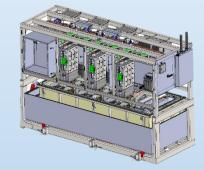
	A	в	с	D	E	F	G	н	1	J	ĸ	L	м	N	0	P	Q	R	S	т
4	Risk Number	Risk Name	Description of the threat	Potential impact of the threat	S value	P value	Risk level		S value	P value	Risk level	Comments								
5	1	Production	Incorrect production of aluminium plates	Ineffective cooling process and problems during assembly	5	з	15	Control of the aluminum plate manufacturing process at every stage of production	5	1	5									
6	2	Production	Incorrect production of tungsten plates	Ineffective cooling process and problems during assembly	5	з	15	Control of the tungsten plate manufacturing process at every stage of production	5	1	5									
7	3	Assumptions/Design	Insufficient system pressure	Ineffective cooling process	5	3	15	Comparison of empirical calculations with simulation data and confirmation of assumptions	5	1	5									
8	4	Production/Assembly	Insufficient system pressure	Ineffective cooling process	4	2	8	Control of the exchanger manufacturing process (dimensions of copper pipes) and control during assembly	4	1	4									
9	5	Assumptions/Design	Insufficient flow (stream)	Ineffective cooling process	5	3	15	Comparison of empirical calculations with simulation data and confirmation of assumptions	5	1	5				Legend					
10	6	Assembly	No surface contact between the aluminum plate and the tungsten plate	Ineffective cooling process	4	3	12	Control during assembly aluminium and tungsten plates	4	1	4				"S" value	"P" value				
11	7	Transport	Damage to elements during transport	No assembly possible	5	2	10	Securing all components during transport	5	1	5			1	minimal effect	nearly impossible				
12	8	Assembly	Leak	Ineffective cooling process and damage to adjacent installations	5	з	15	Control of the exchanger assembly process	5	1	5			2	low effect	low probably				
13	9	Design/Production/Assembly	No validation electronics	Extension of the design and production time and problems in the assembly process	4	2	8	Confirmation from the manufacturer of final dimensions	4	1	4			3	medium effect	moderately possible				
14	10	Design/Assembly	Overloaded supporting structure of the exchangers	Possibility of damage elements	5	2	10	Performing mechanical calculations	5	1	5			4	serious effect	probable				
15	11	Production/Assembly	Mechanical damage to copper pipes and clogging	Ineffective cooling process	5	2	10	Control of the production and assembly process	5	1	5			5	catastrophic effect	almost certain				
16	12	Assembly	Insufficient number of elements during assembly	No assembly possible	5	2	10	Test assembly to verify the presence of the necessary elements. Spare parts	3	1	3									
17	13	Assembly	Incorrect assembly of elements	Damage to the structure, incorrect operation of the exchanger	4	2	8	Installation according to a previously prepared procedure	4	1	4					RISK LE	EVEL			
18	14	Design/Use	Water temperature in the cooling system too low	Water condensation on the installation	4	2	8	Design of the installation according to the indicated water temperature (above the condensing temperature)	4	1	4				4	8	12	16	very high	13-16
19	15	Assembly/ Design	Structural instability	Damage to the installation structure	4	3	12	Performing mechanical calculations	4	1	4			ь	3	6	9	12	high	9-12
20	16	Design/Use	Water temperature in the cooling system too high	Ineffective cooling process	4	3	12	Design of the installation according to the indicated water temperature	4	1	4			EFEECT	2	4	6	8	medium	5-8
21	17	Design	Incomplete or wrong assumptions made as input data	Preparation of technical documentation that does not meet the requirements	5	2	10	documentation based on full, complete and consistent data	5	1	5				1	2	3	4	low	1-4
22																Pr	obability			

IFJ PAN in-kind contribution to ESS – Technical Annexes

SCHEDULE AIK 10.1-Cryomodule test

- Reception of Cryomodule units
- Preparation of Cryomodule units for the test bench
- Installation on the test bench
- Initial testing
- Cool down
- Heat load measurements
- Warm up
- Disconnection
- Preparation for the tunnel
- Participation in site activity coordination
- Final review


2017 - 2026


SCHEDULE AIK 17.3 -PC Installation

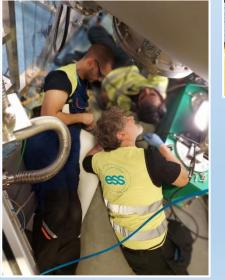
- Klystrons Modulators for RFQ and DTL
- Klystron Modulators for Medium / High Beta
- Magnet Power Converters

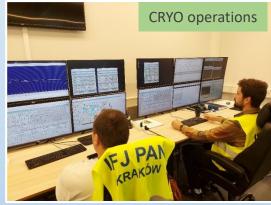
SCHEDULE AIK 8.6 -RF Installation

- Stub installation
- LLRF installation
- LPS installation
- Distribution system installation
- High Power Amplifier installation

CONTRIBUTION TO THE LOW AND HIGH-POWER TESTS OF RF EQUIPMENT AND TESTING AND INSTALLATION OF RFPS'S IN TS3 AND IN G02. 2022 - 2023

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences


IFJ PAN (DAI) at ESS



- Cryogenic experts,
- Mechanical and electrical specialists,
- RF engineers,
- Vacuum specialists,
- Skilled technicians,

permanently at ESS site 14 persons in

total

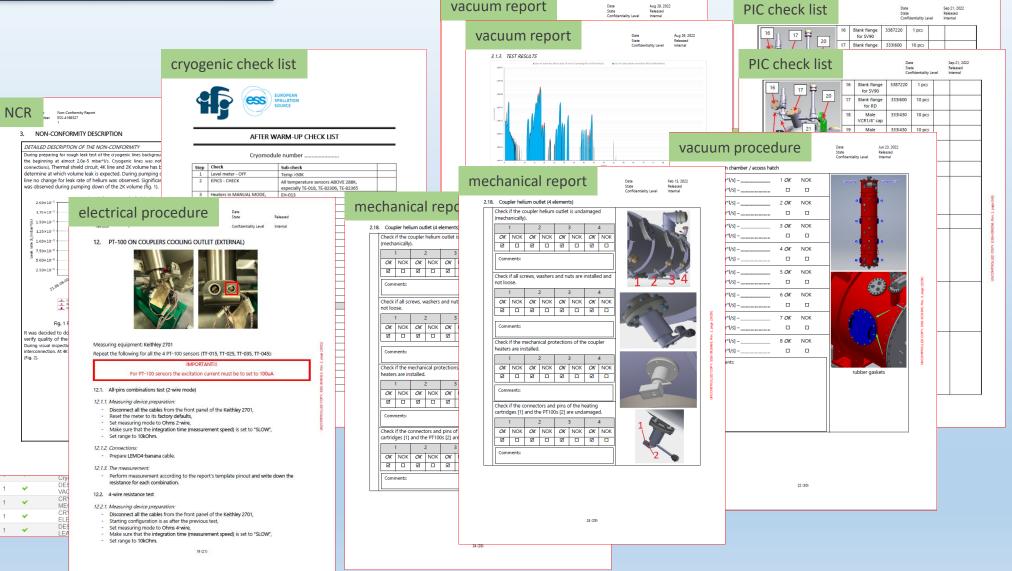
FAIR seminar

IFJ PAN (DAI) at ESS

Supported activities at ESS side

- Support with installation trial of elliptical CM05 & spoke CM02 in the tunel,
- Support with SPOKE CM10 CTS motor replacing,
- Replacing of the LG at all SPOKE CM's,
- Various leak tests for choosen SPOKE CM's,
- Support with MLI installation for ACCP-CTL interconnections,

level gauge replacing at SPOKE CM



IFJ PAN (DAI) at ESS

Documents:

- 10 procedures
- 47 reports templates
- 15 check lists templates
- 13 NCR's

Asset	Documentation	ESS Project Accelerator Accelerator Coll	aboratio	
_	1 0	Actions • 🖽 Table • 💋 🖽 • 🍞	m -	
all documents in CHESS system	Documentation	Name		
st	ate	1. 🗆 🛱 🗁 Asset Documentation	•	
Š	rties	2. 🔲 📲 🗁 Medium Beta Cavities	•	
S	s	3. 🗋 📲 🗁 Medium Beta CM Assembly	۹.	
S		4. 🗆 🛏 🗁 Medium Beta CM Parts	%	
Ψ		5. Medium Beta CM Operation	•	
L.		6. □ → 🗉 🗁 CM01	•	
$\tilde{\epsilon}$		7. 🗆 🛏 🗁 CM03	۹.	
.≒		8. □ →⊞ 🗁 CM04	•	
ts		9. □ → ■ 🗁 CM00	•	
		10. C -M05	•	
e		11. □ → ESS-3730754	•	
		12. □ → D ESS-3739897	%	
5		13. 🗆 🔸 🖹 ESS-3837787	s 🖸	1
9		14. □ → 🖹 ESS-3843954	s 🖸	1
		15. □ → 🖺 ESS-3833407		

10.10.2024, Krakow

5th ALICE Upgrade Week in Krakow

IFJ PAN (DAI) at LHC

LHC - construction, commissioning, consolidation

Sining of the agreement in 2005-2010 between IFJ PAN Director – prof. Marek Jeżabek and LHC Project Coordinator – dr. Lyndon Evans

- Design and implementation of automatic measurement systems for testing superconducting LHC circuits
- Quality Control of superconducting electrical circuits
- Inspection of LHC superconducting magnet connections

Quality Control of superconducting electrical circuits ELQA TEAM

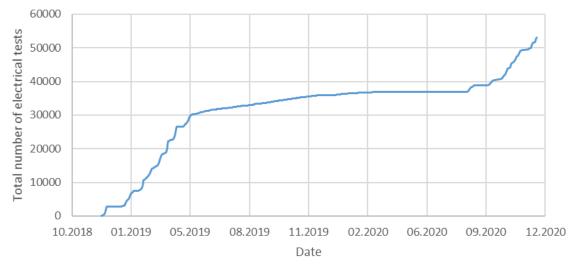
LHC during Long Shutdown

Damage disclosed during QC-ICIT TEAM

New measurement systems

✓ The work managing of the multinational team "Alpha-Omega"

Measurements in the LHC during Long Shutdown 2



- Standard measurements on more than 1600 LHC superconducting circuits and their instrumentation before and after warm-up of the LHC.
- Software development, design and fabrication of four dedicated diode lead measurement systems.

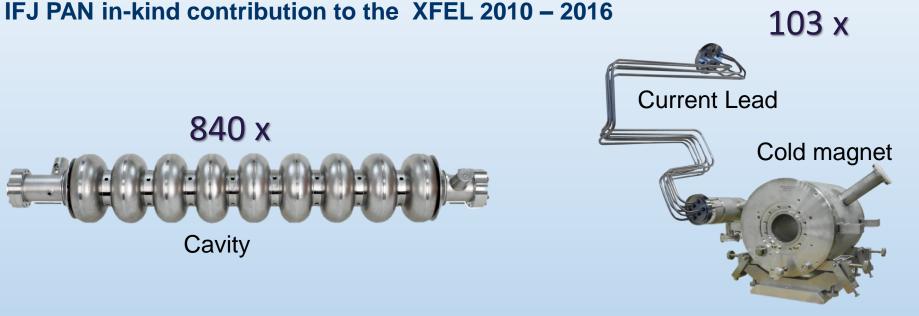
Standard ELQA measurements in the LHC during Long Shutdown 2.

Up to 25 engineers and technicians from IFJ PAN on CERN site

Number of ELQA measurements performed by IFJ PAN personnel during LS2 until the end of 2020.

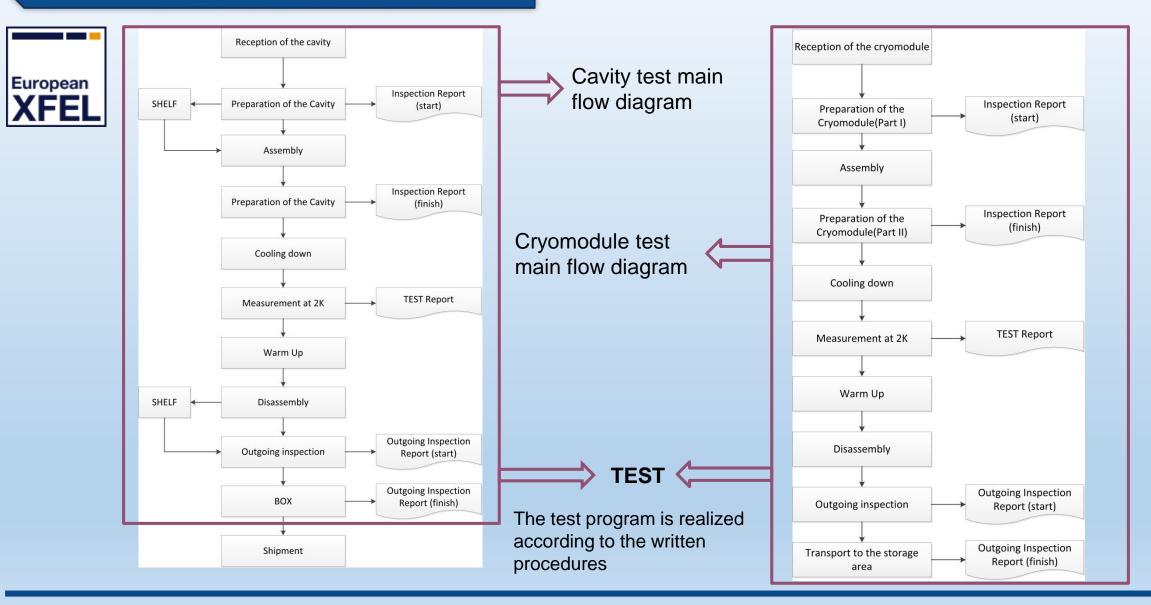
Procedures at CERN

- Co-authorship of 10 procedures related to electrical quality assurance of LHC and HL-LHC superconducting circuits
- Prototype crab cavity assembly procedure


IFJ PAN (DAI) at XFEL

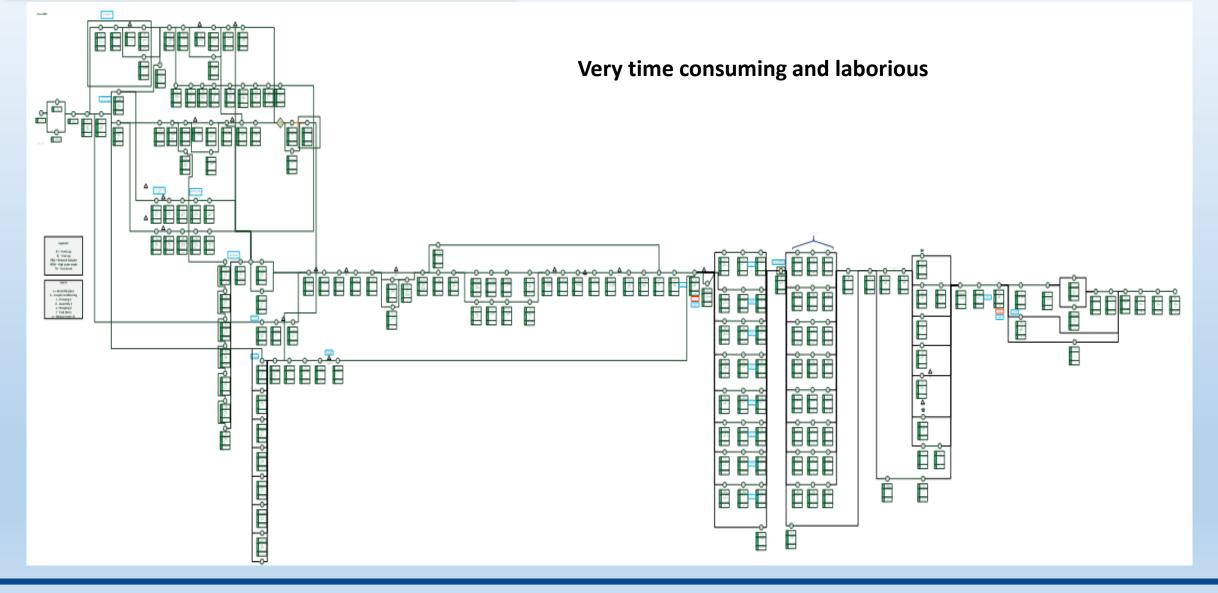
Acceptance tests of superconducting components of the <u>XFEL</u> accelerator

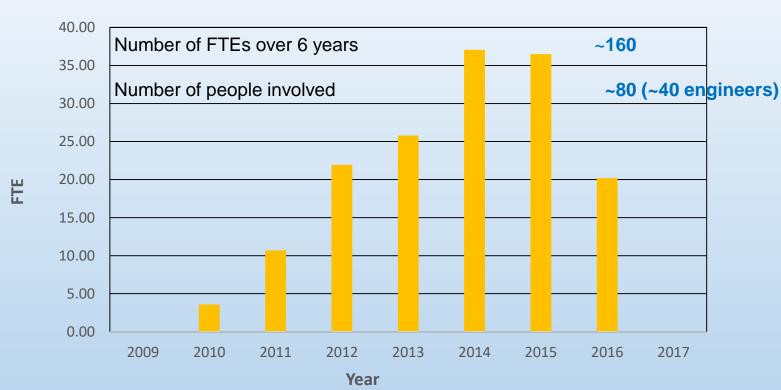
IFJ PAN Team met the logistic challenge in facility operating (equipped with) :


- •Two cryostats
- •Preparation area for cavities (6 Inserts)
- •Three test stands for cryomodules
- •Preparation areas for cryomodules(3x special support for survey check + additional 5 place for further incoming check.
- •Limited Storage areas for cavities and cryomodules
- •2 cryo operation(2 slots) available at the same time

The Henryk Niewodniczański Institute of Nuclear Physics

Polish Academy of Sciences


TEST - What does it mean ?



TEST - What does it mean ?

In total were performed:

1214 tests for 813 series cavities performed

108 tests performed of 101 series cold magnets and current leads

107 tests for 100 series cryomodules

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

AMTF Hall - Cryomodule

Unloading of the cryomodule after transport

Cryomodule preparation area

Cryomodule test stand

Cryomodule test stand – module inside

Cryomodule test stand – front view

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

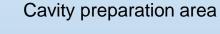
Preparation and assembling of cryomodules at AMTF hall

Main tasks:Unload the cryomodule from the truck

- Incoming checks
- Load the cryomodule to the movable support
- Assembling Cryomodule at the test stand
- Connecting Cryomodule beam line to the test stand under clean room conditions
- Leak check of beam line interconnections and mass spectroscopy of the beam line
- Connecting of the waveguides
- Connecting of all electrical cables
- Connect of all cryomodule process pipes to the test stands
- Leak check of cryomodule vessel (ISO-VAC)
- Leak check of cryomodule cryogenic lines
- Assembly and isolating thermal shields
- Pumping down of isolation vacuum



AMTF Hall - Cavity


Vertical Cryostat

Radiation protection shielding

Cavity storage area

Cavity incoming check area

Clean room

10.10.2024, Krakow

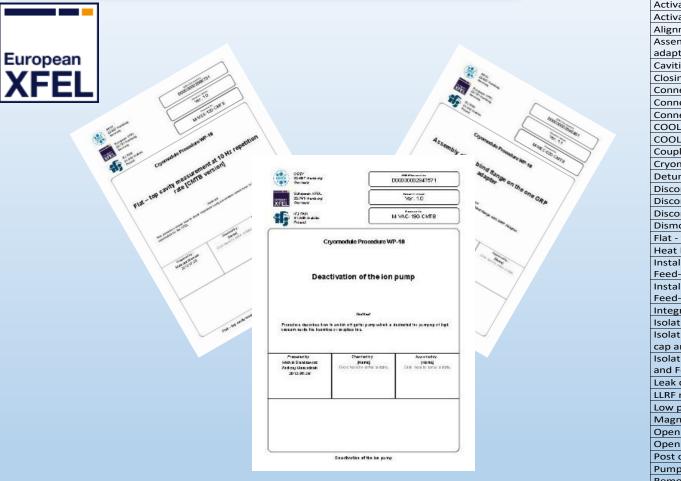
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Preparation and assembling of cavities at AMTF hall

Main tasks:

- Incoming checks
- Assembling Cavity to the Insert
- Connecting Cavity to the vacuum line (in cleanroom conditions)
- Tuning of Fundamental Mode Rejection Filters of both HOM couplers + Cables connection
- Leak check of the Cavity
- Transport of the Insert to the cryostat + vacuum connection

10.10.2024, Krakow


FAIR seminar

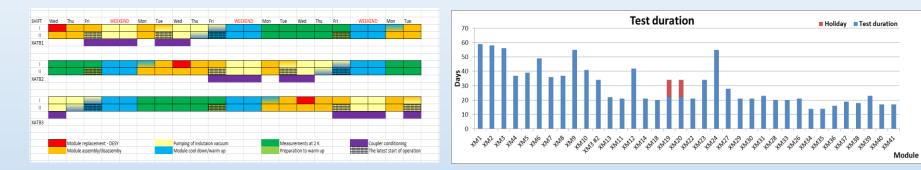
The Henryk Niewodniczański Institute of Nuclear Physics

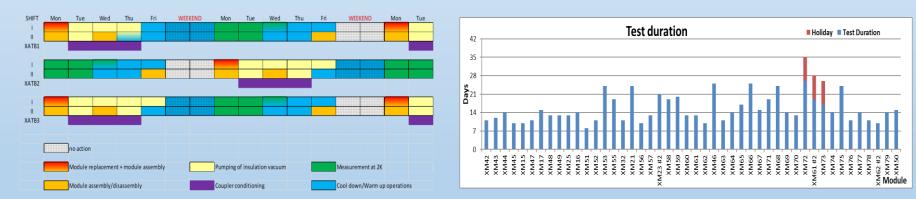
Polish Academy of Sciences

XFEL Procedures

Number of created procedures:

~50 for Cryomodule (AMTF) ~19 for Cavity (AMTF) ~146 for Cryomodule (CMTB) ~21 for Cavity (HALL 3)

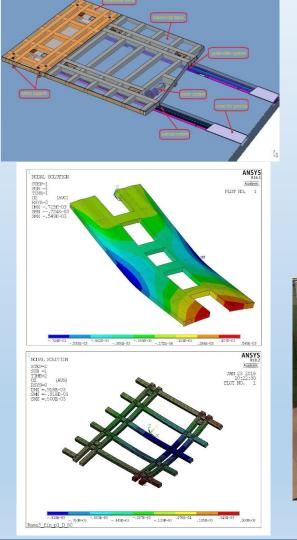

Activation and deactivation of Ion Pump	D0000006689411	09.02.2016
Activation of Titanium Sublimation Pump (TSP)	D0000006689491	09.02.2016
Alignment of the crymodule	D0000006678751	26.01.2016
Assembly final tightening and connection of GRP		
adapter	D0000006651881	26.01.2016
Cavities fine tuning and module calibration	D0000006630821	11.12.2015
Closing of the sliding muff	D0000006650681	20.01.2016
Connection of all process pipes	D0000006651941	26.01.2016
Connection of the beamline	D0000006790331	24.03.2016
Connection of the waveguides	D0000006853821	25.04.2016
COOL DOWN XATB	D0000006563271	08.01.2016
COOL DOWN_XATB_checklist	D0000006552401	09.01.2016
Coupler tuner bellow check at warm	D0000006637781	18.12.2015
Cryomodule Heat Loads measurements	D0000006710641	23.03.2016
Detune all cavities after cold test	D0000006632411	14.12.2015
Disconnection of all process pipes	D00000006652001	21.01.2016
Disconnection of the beamline	D00000006790571	24.03.2016
Disconnection of the waveguides	D00000006853921	25.04.2016
Dismounting of GRP adapter	D00000006652061	26.01.2016
Flat - top measurement	D00000006638681	18.12.2015
Heat Loads Measurements at 2K RF	D00000006637201	18.12.2015
Installation of the 80K thermal shield at End-cap and	00000000037201	18.12.2015
Feed-cap sides	D0000006678511	26.01.2016
Installation of the 8K thermal shield at End-Cap and	200000000078511	20.01.2010
Feed-cap sides	D0000006678461	26.01.2016
Integral leak check of the cryomodule	D00000006633341	15.01.2016
Isolating of all process pipes	D00000006652431	20.01.2016
Isolation of the 80K thermal shield using MLI at End-	D00000000032431	20.01.2010
cap and Feed-cap sides	D0000006678631	26.01.2016
Isolation of the 8K thermal shield using MLI at End-cap	200000000000000000000000000000000000000	20.01.2010
and Feed-cap sides	D0000006678571	26.01.2016
Leak check of the cryomodule	D0000006711021	15.02.2016
LLRF measurements at AMTF	D00000006637721	05.01.2016
Low power RF measurement at 2K	D00000006630761	11.12.2015
Magnet test at 2K	D00000006632351	21.12.2015
Opening and closing of the cold valve	D00000006710831	15.02.2016
Opening of the sliding muff	D00000006651091	20.01.2016
Post caps installation	D00000006651331	20.01.2010
Pumping down of the cryomodule insulation vacuum	D00000006789801	24.03.2016
Removal of Post caps	D00000006651391	20.01.2016
Removal of the transport-cap at downstream side	D00000006651391	21.01.2016
Removal of the transport-cap at downstream side	D00000006651451	21.01.2016
Unloading of the XFEL cryomodule from the trailer and	000000000000000000000000000000000000000	21.01.2016
transfer to the preparation area	D0000006678691	26.01.2016
Vacuum incoming inspection for crymodule	D00000006632481	15.01.2016
	-	18.12.2015
Warm coupler conditioning	D0000006637261	18.12.2015



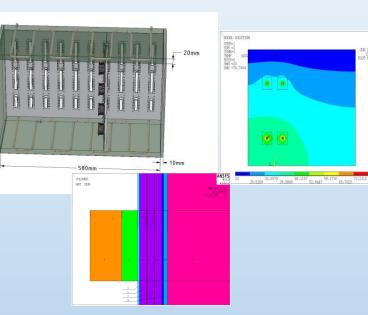
In November 2014 the major plan how to perform the test of the cryomodule with rate 1 per week (21 days test program) have been created

Test rate 1 module per week

Test rate 1.5 module per week

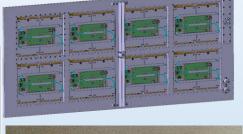


A small drop of our experience

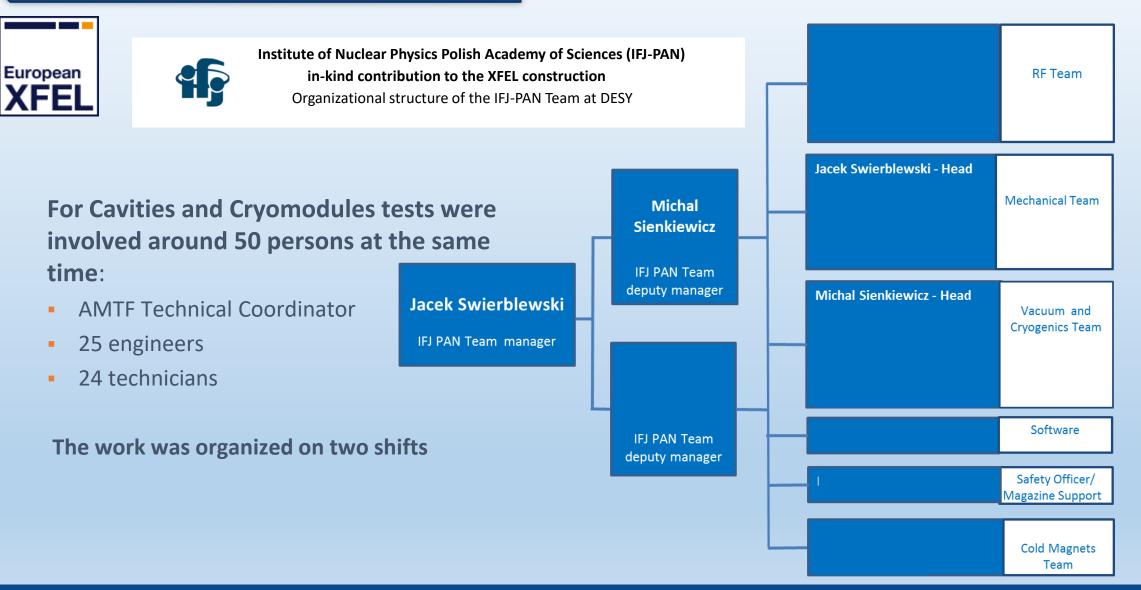

GSI – Detector Motion System

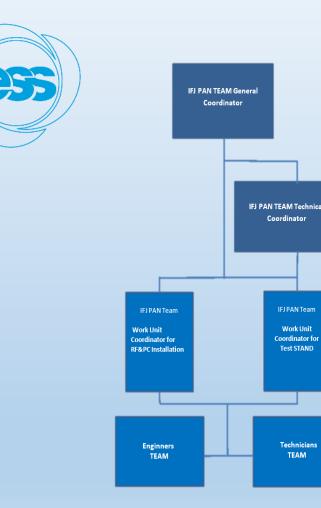
<image>

ITK – ATLAS experiment


PIERRE AUGER – Surface Scintillator Detector (SSD)

ANSYS


T2K (ND280 detector upgrade)


Lack of structures, lack of quality

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Lack of structures, lack of quality

IFJ PAN Team at Lund (ESS)

Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) in-kind contribution to the ESS construction Organizational structure of the IFJ-PAN Team at ESS

18 People involved **The work is organized on one shift**

PERSONNEL:

GENERAL Coordinator: Technical Coordinator – Work Unit Coordinator for Test Stand – Work Unit Coordinator for RF&PC Installation -

Understanding of the Quality

Quality Assurance

Quality assurance can be defined as <u>"part of quality</u> <u>management focused on providing confidence that quality</u> <u>requirements will be fulfilled.</u> The confidence provided by quality assurance is twofold—internally to management and externally to customers, government agencies, regulators, certifiers, and third parties. Quality Control

Quality control can be defined as <u>"part of quality management</u> <u>focused on fulfilling quality requirements.</u> While quality assurance relates to how a process is performed or how a product is made, quality control is more the inspection aspect of quality management.

QC focuses on the results of the work performed, whereas QA is concerned with the adequacy of the underlying processes, methodology, and standards in place to create the output.

Project Management Theory and Practice, Third Edition, 2019

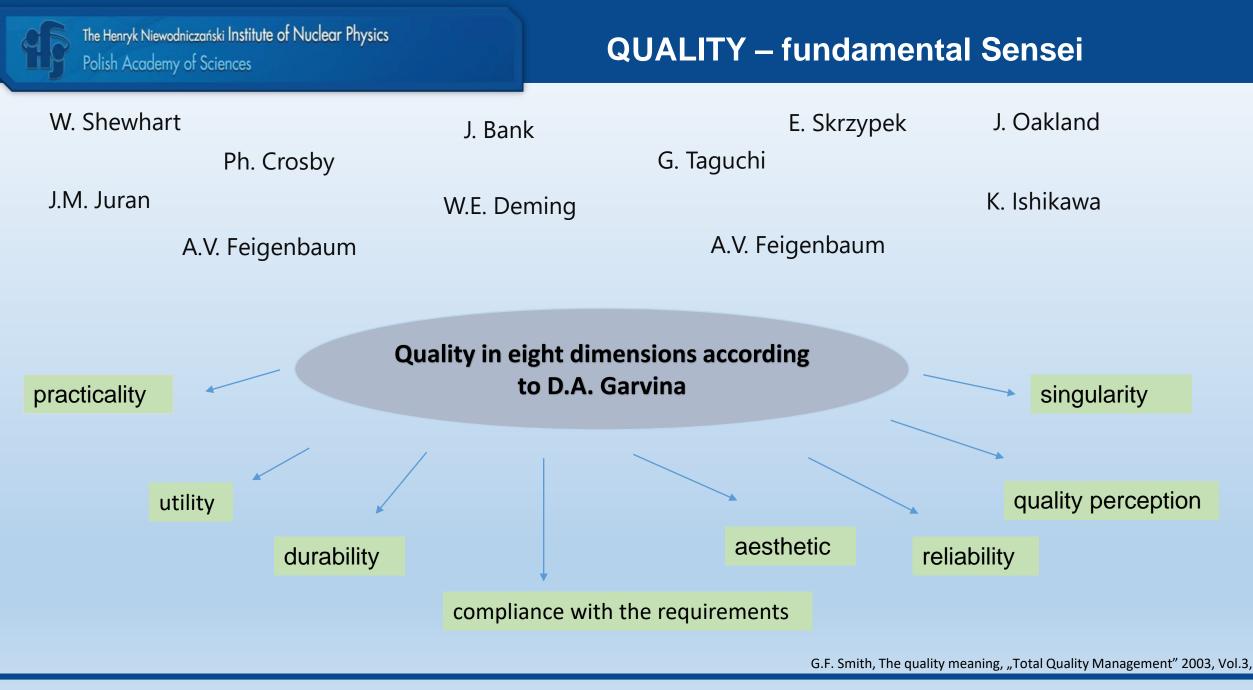
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences **Quality Relationships.** ISO 9000 definitions from ISO 9000:2015: Quality management systems

This standard describes the fundamental concepts and principles of quality management which are universally applicable to the following:

- organizations seeking sustained success through the implementation of a quality management system;
- customers seeking confidence in an organization's ability to consistently provide products and services conforming to their requirements;
- organizations seeking confidence in their supply chain that product and service requirements will be met;
- organizations and interested parties seeking to improve communication through a common understanding of the vocabulary used in quality management;
- organizations performing conformity assessments against the requirements of ISO 9001;
- providers of training, assessment or advice in quality management;
- developers of related standards.

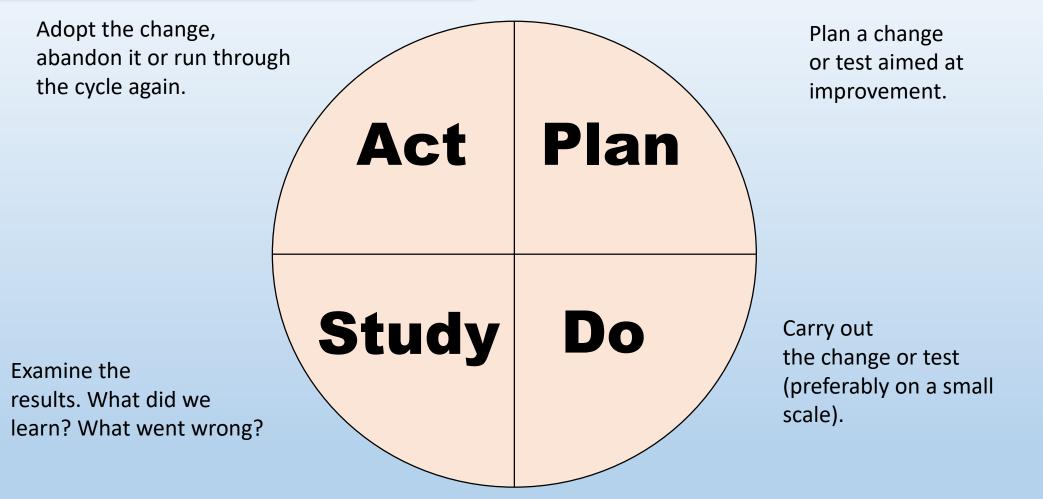
E.W. Deming defines <u>quality as the anticipated degree of homogeneity and reliability of a product at the lowest possible</u> <u>cost and adjusting it to the market requirements.</u>

Quality means conformance to requirements. (Crosby, 1979)


Project Management Theory and Practice, Third Edition, 2019

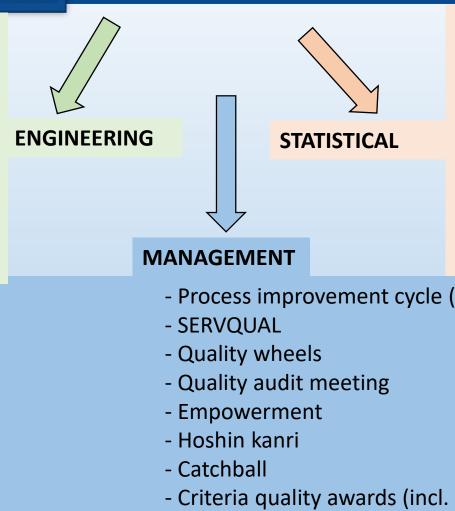
7 Principals of Quality

- Customer focus
- Leadership
- Engagement of people
- Process approach
- Improvement
- Evidence-based decision making
- Relationship management


One American computer manufacturer was dissatisfied with one of its American suppliers. So he decided to try to cooperate with the Japanese. In the order, he wrote that he expected for every 10 000 no more than 4 defective products on average, which was in line with the US military standard 105D at that time. The Japanese took the order. Some time later the delivery of the equipment came, along with a letter that read: "We Japanese have a hard time for understanding the North American way of doing business. Four defective parts per 10 000 are delivered separately. We hope you are satisfied with this. "

Andrzej Blikle, Doktryna jakości (wydanie II turkusowe) — rzecz o turkusowej samoorganizacji (16 września 2016)

PDSA – Deming's cycle


Deming modified Shewhart cycle and called new one \rightarrow the Shewhart Cycle for Learning and Improvement

Deming described it as a flow diagram for learning and improvement of a **product** or a **process**.

Classification of quality management methods

- Failure mode and effects Analysis (FMEA)
- Quality function deployment (QFD)
- Projektowanie eksperymentów
- Metoda Taguchiego
- Single minute exchange of die
- Poka voke
- Total productive maintenance
- Just in time
- Kanban
- 5xS
- Kaizen
- Continuous improvement cycle(PDCA)
- Quality cost analysis
- Ishikawa diagram
- Relationship diagram
- Matrix diagram
- Decision tree
- Programming chart the decision process
- Benchmarking
- Quality planning
- Graphical presentation processes
- Flag method



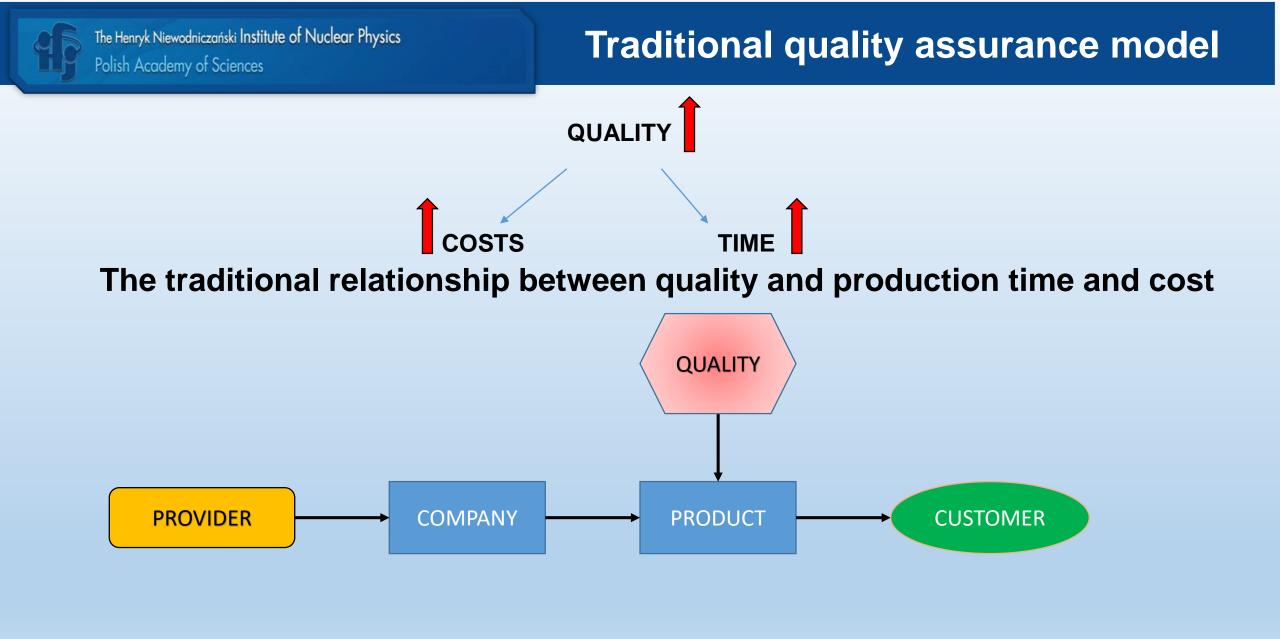
- Control card
- Pareto diagram
- Scatter correlation diagram
- Histogram
- Data analysis matrix
- Analytical sheet
- Statistical quality control
- Statistical controls process
- Process capability analysis
- Process improvement cycle (DMAIC)

- Criteria quality awards (incl. W. E. Deming, M. Baldridge)
- EFQM excellence
- ISO 9004
- Management review
- Internal audit

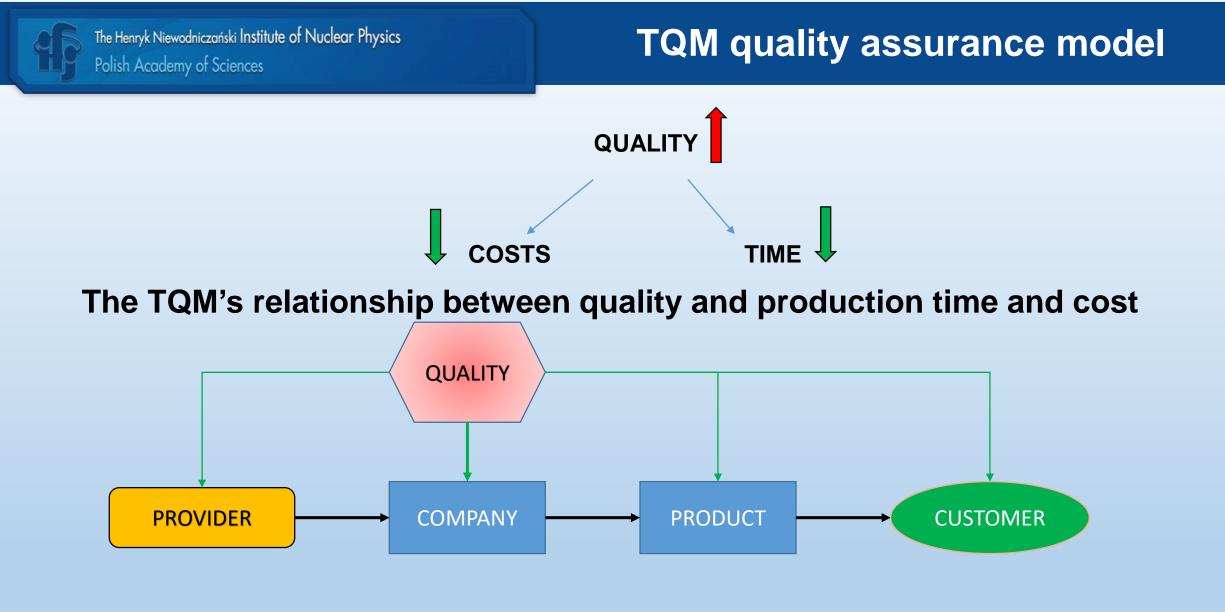
ISSN 1898-6447, Zesz. Nauk. UEK, 2013; 910: 37-349

Total Quality Management — TQM

The heart of the TQM philosophy is the prevention of problems and an emphasis on quality in the design and development of products and processes. A formal quality planning process is integral to the TQM philosophy.



Deming's 14 Points for the Transformation of Management First presented in Dr. Deming's seminal book, *Out of the Crisis*


85% of quality problems are due to system errors and only 15% can be attributed to employees.

- ✓ Create constancy of purpose for improving products and services
- \checkmark Adopt the new philosophy
- \checkmark Cease dependence on inspection to achieve quality
- ✓ End the practice of awarding business on price alone; instead, minimize total cost by working with a single supplier
- ✓ Improve constantly and forever every process for planning, production, and service
- \checkmark Institute training on the job
- \checkmark Adopt and institute leadership
- \checkmark Drive out fear
- \checkmark Break down barriers between staff areas
- $\checkmark\,$ Eliminate slogans, exhortations, and targets for the workforce
- \checkmark Eliminate numerical quotas for the workforce and numerical goals for management
- ✓ Remove barriers that rob people of pride of workmanship, and eliminate the annual rating or merit system
- \checkmark Institute a vigorous program of education and self-improvement for everyone
- \checkmark Put everybody in the company to work accomplishing the transformation

https://deming.org/explore/fourteen-points/

Andrzej Blikle, Doktryna jakości (wydanie II turkusowe) — rzecz o turkusowej samoorganizacji (16 września 2016)

Andrzej Blikle, Doktryna jakości (wydanie II turkusowe) — rzecz o turkusowej samoorganizacji (16 września 2016)

1. Lack of constancy of purpose to plan product and service that will have a market and keep the company in business and provide jobs. Lack of a set course of action is not like a runny nose or the flu. It is not a mild disease. It is a fatal disease and leads to the collapse of the company

2. *Emphasis on short-term profits*: short-term thinking (just the opposite from constancy of purpose to stay in business), fed by fear of unfriendly takeover, and by push from bankers and owners for dividends.

3. Evaluation of performance, merit rating, or annual review.

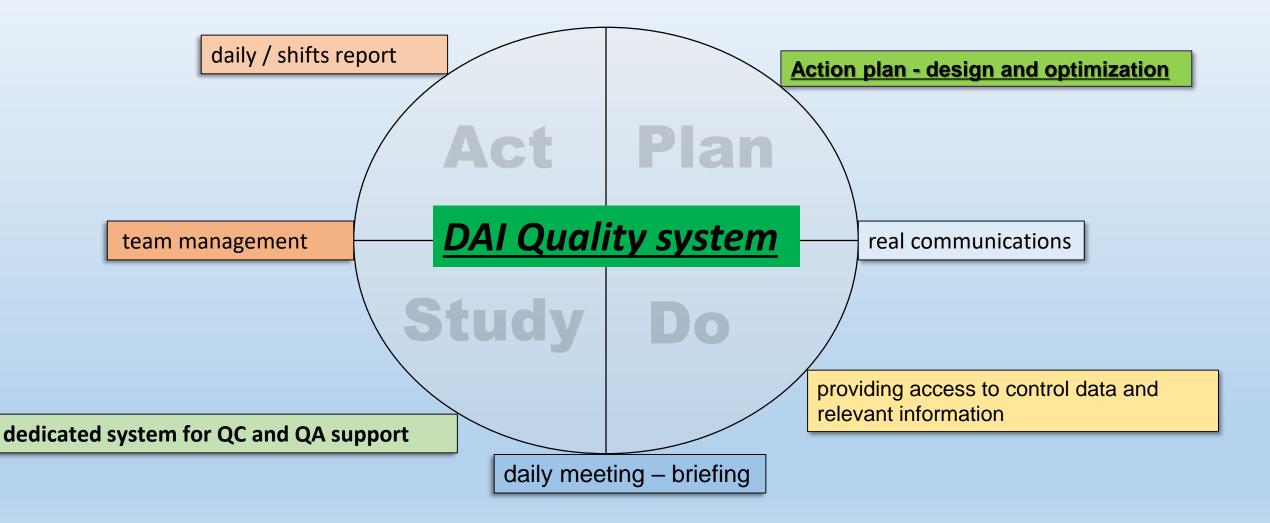
4. *Mobility of management*; job hopping.

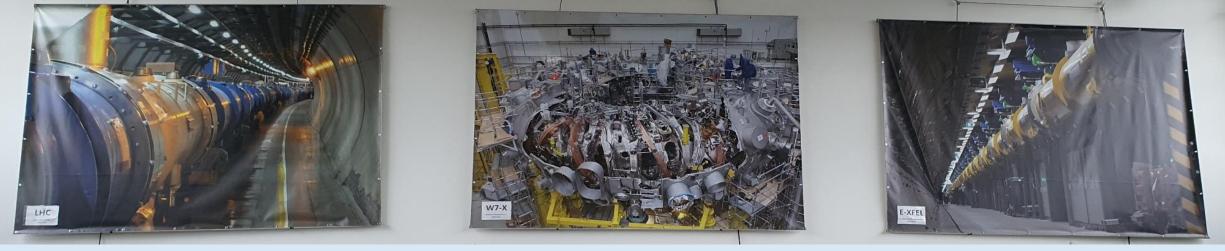
5. *Management by use only of visible figures*, with little or no consideration of figures that are unknown or unknowable.

6. *Excessive medical costs*. As reported by Dr. Deming in Out of the Crisis (pages 97-98), executives shared with him that the cost of medical care for their employees was amongst their largest overall expenses, not to mention the cost of medical care embedded in the purchase price of what they purchased from their suppliers.

7. *Excessive costs of liability*, swelled by lawyers that work on contingency fees.

https://deming.org/explore/seven-deadly-diseases/


EFQM Model - European Foundation for Quality Management



"The EFQM Model not only remains relevant but continues to set the management agenda for any organisation wanting a long term, sustainable future." - EFQM Model Change Management Framework | EFQM

https://www.efqm.org/efqm-model

Division of Scientific Equipment and Infrastructure Construction (DAI)

ON BEHALF of the TEAM:

Jacek Świerblewski

Jacek.Swierblewski@ifj.edu.pl

So that customers come back to you, not products! Quality is something that satisfies and even delights customers.

William Edwards Deming