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The barrel RICH challenges — Radiation Load
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SiPMs cooling concept

RALICE

Dual-phase CO, cooling - A good choice for HEP applications
* advantages of dual-phase CO2 cooling for HEP applications:
* large latent heat transfer due to the phase change energy for the transition of liquid to gas
e operation with low mass flow of the coolant is possible
* low mass flow as well as a low liquid viscosity results in a low pressure drop along cooling pipe
* alow pressure drop allows the use of small pipe diameters or technical solutions like micro-
* channel cooling, which allows new detector design concepts
* high heat transfer capability (typical ~8000 W/Km) is possible despite small pipe diameters
* practical temperature range of —-40°C to 25°C for detector application
* CO, is a natural, non-toxic, non-flammable, radiation resistant and non-magnetic gas

Micro-channel cooling on Si - A silicon-embedded Technologies ﬁ E m
* micro-channel cooling in Si is a favourable technology
e optimized thermal contact with heat sources Hybrid pixel detector & - Monolthic CMOS detector  Monoltic CMOS detector
* heavily simplified assemblies
* reduction of material
» efficient for cooling “chip-like” heat densities
* basic technological process: deep RIE + (anodic, eutectic, fusion) wafer bonding
» further integrations also possible!

* example: metal Re-Distribution Layers (RDL) (M. Ulldn et al. (HSTD13, 2023))




SiPMs cooling concept

e Cool down the sensor to -40 °C
* Dual-phase CO, micro-channels thorugh a special iterposer (between the sensor and the

FEE ASIC)
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Mechanics

RALICE
Cylindrical projective geometry 24 sectors in z
* All aerogel tiles oriented toward nominal interacion point 36 modules in r¢for each sector
* Full coverage to charged particles without ovelaps | > Sensor area = 30.7 m?2
* Trapeizoidal tile profile to maximize the acceptance .
P P P # channels = 7*10°
radiator
2.4m

Proximity gap

Photon
sensor




Mechanics %

RALICE

From Corrado’s presentation in March

TOF+RICH (1/4) insertion from A-side @




Mechanics %
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Mechanics %

RILICE

GAP FILLED BY DRY GAS
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Mechanics %

RLICE

THERMAL SHIELD (due to space
constraints no more than few centimeters
of thickness)

Flushed by dry
nitrogen or CO,

Inner temperature=-40°C
Outer temperature = 20 °C

Full cylinder divided in 2 cylinders, each
of them divided in 4 slices (90° each)




Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven
fibers, which produces a flexible, compressible,
and highly efficient insulation material.

Flexible aerogel blanket (Cryogel® Z )
Composed of a flexible aerogel blanket laminated to
a vapor retarder.




Conclusion & outlook

Cooling the SiPM sensors is crucial for reducing the dark count rate (DCR) to acceptable levels
for single-photon detection.

We have begun exploring the possibility of using dual-phase CO, micro-channels within the
interposer.

Dedicated studies on the interposer will commence soon.

A thermal shield will be required to isolate the detector from external environmental factors.

* Specific heat exchange simulations will be carried out to determine the materials and
thickness needed.

Initial CAD drawings of the detector structure have been completed.
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Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven fibers, which
produces a flexible, compressible, and highly efficient insulation
material.

Thermal Wrap™ blanket - Thermal conductivity with temperature

° Thermal Conductivity ° Thermal Conductivity
Mean Temp °C (mW/mK) Mean Temp °F (BTU/hr*ft*°F)

-129 13 -200 0.0075
-73.3 17 -100 0.0098
-17.8 20 0 0.0116
23.9 23 75 0.0133
37.8 25 100 0.0144
93.3 32 200 0.0185
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Thermal shield

Aerogel as thermal insulator!!

Flexible aerogel blanket (Cryogel® Z )

Composed of a flexible aerogel blanket laminated to a vapor
retarder.
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