

ALICE 3 RICH: cooling and mechanics

ALICE Upgrade Week 7th-11th October, 2024

Eugenio Nappi (INFN, Bari), Giacomo Volpe (University & INFN, Bari)

The barrel RICH challenges – Radiation Load

•

SiPMs cooling concept

Dual-phase CO₂ cooling - A good choice for HEP applications

- advantages of dual-phase CO2 cooling for HEP applications:
 - large latent heat transfer due to the phase change energy for the transition of liquid to gas
 - operation with low mass flow of the coolant is possible
 - low mass flow as well as a low liquid viscosity results in a low pressure drop along cooling pipe
 - a low pressure drop allows the use of small pipe diameters or technical solutions like micro-
 - channel cooling, which allows new detector design concepts
 - high heat transfer capability (typical ~8000 W/Km) is possible despite small pipe diameters
 - practical temperature range of -40°C to 25°C for detector application
 - CO₂ is a **natural**, non-toxic, non-flammable, radiation resistant and non-magnetic gas

Micro-channel cooling on Si - A silicon-embedded Technologies

- micro-channel cooling in Si is a favourable technology
 - optimized thermal contact with heat sources
 - heavily simplified assemblies
 - reduction of material

٠

- efficient for cooling "chip-like" heat densities
- basic technological process: deep RIE + (anodic, eutectic, fusion) wafer bonding
- further integrations also possible!
 - example: metal Re-Distribution Layers (RDL) (*M. Ullán et al. (HSTD13, 2023)*)

Hybrid pixel detector & micro-channel cooling plate Monolithic CMOS detector Monolithic C with integrate

Monolithic CMOS detector with integrated micro-channels

SiPMs cooling concept

- Cool down the sensor to -40 °C
 - Dual-phase CO₂ micro-channels thorugh a special iterposer (between the sensor and the FEE ASIC)

- Isolate the detector from the external evironment
 - Thermal insulator vessel: -40 °C inside, 20 °C outside

Thermal shield

4

Cylindrical projective geometry

- All aerogel tiles oriented toward nominal interacion point
- Full coverage to charged particles without ovelaps
- Trapeizoidal tile profile to maximize the acceptance

24 sectors in z 36 modules in $r\phi$ for each sector Sensor area \cong 30.7 m² # channels \cong 7*10⁶

From Corrado's presentation in March

TOF+RICH (1/4) insertion from A-side

Full cylinder divided in 8 modules

Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven fibers, which produces a flexible, compressible, and highly efficient insulation material.

Flexible aerogel blanket (Cryogel[®] Z)

Composed of a flexible aerogel blanket laminated to a vapor retarder.

Conclusion & outlook

- Cooling the SiPM sensors is crucial for reducing the dark count rate (DCR) to acceptable levels for single-photon detection.
- We have begun exploring the possibility of using dual-phase CO₂ micro-channels within the interposer.
- Dedicated studies on the interposer will commence soon.
- A thermal shield will be required to isolate the detector from external environmental factors.
 - Specific heat exchange simulations will be carried out to determine the materials and thickness needed.
- Initial CAD drawings of the detector structure have been completed.

Backup

Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven fibers, which produces a flexible, compressible, and highly efficient insulation material.

Thermal Wrap[™] blanket - Thermal conductivity with temperature

Mean Temp °C	Thermal Conductivity (mW/mK)	Mean Temp °F	Thermal Conductivity (BTU/hr*ft*°F)
-129	13	-200	0.0075
-73.3	17	-100	0.0098
-17.8	20	0	0.0116
23.9	23	75	0.0133
37.8	25	100	0.0144
93.3	32	200	0.0185

Thermal shield

Aerogel as thermal insulator!!

Flexible aerogel blanket (Cryogel® Z)

Composed of a flexible aerogel blanket laminated to a vapor retarder.

Mean Temp. °F / °C	k BTU-in/hr-ft²-°F / mW/m-K
-200 / -129	0.096 / 14
-100 / -73.3	0.10/15
0/-17.8	0.11/16
75/23.9	0.12 / 17
100/37.8	0.12 / 17
200/93.3	0.13/19
0/-17.8 75/23.9 100/37.8 200/93.3	0.11/16 0.12/17 0.12/17 0.13/19

THERMAL CONDUCTIVITY⁺ Tested in accordance with ASTM C177