

1

ALICE 3 RICH: cooling and mechanics

ALICE Upgrade Week 7th-11th October, 2024

Eugenio Nappi (INFN, Bari), Giacomo Volpe (University & INFN, Bari)

The barrel RICH challenges – Radiation Load

SiPMs cooling concept

Dual-phase CO₂ cooling - A good choice for HEP applications

- advantages of dual-phase CO2 cooling for HEP applications:
	- large latent heat transfer due to the phase change energy for the transition of liquid to gas
	- operation with **low mass flow** of the coolant is possible
	- **low mass flow as well as a low liquid viscosity results in a low pressure drop along cooling pipe**
		- a low pressure drop allows the use of small pipe diameters or technical solutions like micro-
	- **channel cooling, which allows new detector design concepts**
	- high **heat transfer capability** (typical ~8000 W/Km) is possible despite small pipe diameters
	- practical **temperature range** of −40[°]C to 25[°]C for detector application
	- CO₂ is a **natural**, non-toxic, non-flammable, radiation resistant and non-magnetic gas

Micro-channel cooling on Si - A silicon-embedded Technologies

- micro-channel cooling in Si is a favourable technology
	- **optimized thermal contact with heat sources**
	- heavily simplified assemblies
	- reduction of material
	- efficient for cooling "chip-like" heat densities
- basic technological process: deep RIE + (anodic, eutectic, fusion) wafer bonding
- further integrations also possible!
	- example: metal Re-Distribution Layers (RDL) (*M. Ullán et al. (HSTD13, 2023)*)

Hybrid pixel detector & micro-channel cooling plate Monolithic CMOS detector Monolithic CMOS detector with integrated micro-channels

SiPMs cooling concept

- Cool down the sensor to -40 °C
	- Dual-phase $CO₂$ micro-channels thorugh a special iterposer (between the sensor and the FEE ASIC)

- Isolate the detector from the external evironment
	- Thermal insulator vessel: -40 °C inside, 20 °C outside

Thermal shield

ALICE

Cylindrical projective geometry

- All aerogel tiles oriented toward nominal interacion point
- Full coverage to charged particles without ovelaps
- Trapeizoidal tile profile to maximize the acceptance

24 sectors in z 36 modules in $r\phi$ for each sector Sensor area \approx 30.7 m² # channels \cong 7*10⁶

From Corrado's presentation in March

TOF+RICH (1/4) insertion from A-side

Full cylinder divided in 8 modules

TOF+RICH (1/4) insertion from A-side

Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven fibers, which produces a flexible, compressible, and highly efficient insulation material.

Flexible aerogel blanket (Cryogel® Z)

Composed of a flexible aerogel blanket laminated to a vapor retarder.

Conclusion & outlook

- Cooling the SiPM sensors is crucial for reducing the dark count rate (DCR) to acceptable levels for single-photon detection.
- We have begun exploring the possibility of using dual-phase $CO₂$ micro-channels within the interposer.
- Dedicated studies on the interposer will commence soon.
- A thermal shield will be required to isolate the detector from external environmental factors.
	- Specific heat exchange simulations will be carried out to determine the materials and thickness needed.
- Initial CAD drawings of the detector structure have been completed.

Backup

Thermal shield

Aerogel as thermal insulator!!

Thermal Wrap Aerogel Blankets (CABOT)

Made of aerogel granules embedded in non-woven fibers, which produces a flexible, compressible, and highly efficient insulation material.

Thermal Wrap[™] blanket - Thermal conductivity with temperature

Thermal shield

Aerogel as thermal insulator!!

Flexible aerogel blanket (Cryogel® Z)

Composed of a flexible aerogel blanket laminated to a vapor retarder.

THERMAL CONDUCTIVITY + Tested in accordance with ASTM C177

*Thermal conductivity measured at a compressive load of 2 psi.

