

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Status of fast simulations

Jesper K. Gumprecht¹² and David D. Chinellato¹

Oct 7 - 11, 2024 5th ALICE Upgrade Week in Kraków

¹ Stefan Meyer Institute for Subatomic Physics ²Technical University of Vienna

Reminder: What are "fast simulations"?

- \bullet They are simulations where one makes use of already computed detector response
- No particle transport or full reconstruction workflow increases the overall simulation speed by several orders of magnitude
- Higher simulation speed means higher storage needs
	- \rightarrow Typical: 8-hour job fills 100TB disk!
- \rightarrow Typical. o-nout job this 100 FB disk:
If one can avoid writing to disk one saves both I/O time and storage

On-the-fly simulations

- One workflow in O2Physics comprised several highly configurable modules
- Existing o2sim flexibility is kept
	- \rightarrow Access to built in or external generators
- o2-sim-mctracks-to-aod fills MC tables read by subsequent tracking and parametric PID tasks
	- \rightarrow Just as customizable as any regular analysis task
- Status: primary event to final analysis \rightarrow fully operational on Hyperloop

Track smearing with Look-up tables

Fast Analytical Tool

The FAT is what is used to smear tracks for a given input of track parameters and detector geometry.

Look-up Table

Contains several FAT solutions based on iterating over ranges in p_T, η , and multiplicity.

- For a generated track with a given set of parameters we can consider the corresponding bins in the LUT, which already contains the solution for the smearing
- For the solutions that are stored in the LUTs. it is assumed that the track is from the primary vertex
- Each LUT corresponds to ∼100MB that needs to be loaded in memory
- LUTs can also be generated from with other tools such as ACTS

On-the-fly tracker

- Load LUTs into memory: e, μ , π , K , and p
- Process generated Monte-Carlo tables
	- \rightarrow Initialize tracks with perfect Monte-Carlo information

Smeared track

- \rightarrow Detection efficiency
- \rightarrow Momentum
- \rightarrow Spatial position
- For each track we use solution in the corresponding p_T , η , and multiplicity bin to smear the given track
- When smearing a track the detection efficiency is also taken into account to decide whether a track was reconstructed or not
- Produce a track and collisions table, which is accessible in subsequent analysis tasks

TOF parametric response

- Creates an expected time-of-flight detector signal for a set of give parameters
- E.g., radius and timing resolution
- \bullet Accesses LUTs to smear p_T and η resolution
- \bullet Direct generation of $\mathsf{N}_{\mathsf{sigma}}$ for analysis

RICH parametric response

- Similarly, we also create an expected ring-imaging Cherekov signal for another set of parameters
- Again, we use LUTs to smear p_T and η resolution
- Direct generation of N_{sigma} for analysis

Figures from **[presentation by Nicola](https://indico.cern.ch/event/1304623/)** at the ALICE 3 Simulation and Performance meeting

Example: Multi-charm analysis in fast simulations

$$
\begin{aligned}\n\Xi_{cc}^{++} &\rightarrow \Xi_c^+ + \pi^+ \qquad (\text{C}\tau \sim 77 \,\mu\text{m}) \\
\Xi_c^+ &\rightarrow \Xi^- + 2\pi^+ \qquad (\text{C}\tau \sim 132 \,\mu\text{m})\n\end{aligned}
$$

m) 6-prong, total B.R: 5% (est) x 2.9 % = 2.5×10^{-3}

- Three primary-like pions: treated with the existing LUTapproach
- Before there was no way to deal with the weak decay in fast simulations
	- \rightarrow For the letter of intent, the weak decay was treated with the full simulation
- Could we find a solution for treating weak decays in fast simulations?
	- \rightarrow Requires an unprecedented, large-scale use of fast treatment of very displaced tracks

Fast simulations of secondary particles

"FastTracker"

An implementation of the "FAT solver" in the OTF tracker that smears a given secondary track on a case-by-case basis.

- With the "FastTracker", we are able to fully consider R_{2D} and φ_{D} at an acceptable CPU cost
- Current status: minimal outwards/inwards treatment
- Relevant further developments
	- − Energy loss
	- − Multiple scattering

Cascade reconstruction

- Cascade daughters smeared using the FastTracker
- In addition to the FastTracker, strangeness tracking was also implemented in the on-the-fly tracker
	- − Track reconstructed with daughter information updated with cascade hits in inner tracking layers
- Dramatically improves the ability to separate HF daughters from primary multi-strange
- Spatial resolution does not entirely match LoI results
	- \rightarrow Very likely due to missing e-loss and multiple scattering

Ξ_{cc}^{++} analysis: base selections and efficiency

Proof of concept: Ξ_{cc}^{++} with fast simulations

- "FastTracker" tool operational with "on-the-fly" monte carlo generation; no content saved to disk
- State-of-the-art tracking: strangeness tracking included in the fast tracking tool
- Enormous flexibility when testing detector layouts is guaranteed
- Next step: scale signal and background according to realistic expectations and calculate a significance and study different detector configurations

Summary

- On-the-fly simulations are available on Hyperloop for primary event analysis
- New development to the OTF tracker, which considers weak decay daughters in a case-by-case basis
	- \rightarrow First version already available in the O2Physics repository: [FastTracker.cxx](https://github.com/AliceO2Group/O2Physics/blob/master/ALICE3/Core/FastTracker.cxx)
- Future plans
	- − To be implemented: e-loss & multiple scattering
	- − Performance comparison with the LUTs produced by the FAT
		- \rightarrow Since the 'FastTracker' is an implementation of the FAT solver, we should reach the same results!
	- − Scale invariant mass peak and background, and do significance calculation
- The finalized tool is meant to contribute to
	- \rightarrow Scoping discussions
	- \rightarrow Studies for the TDR

Thank you for your attention!

Backup

Backup - Tools available on Hyperloop

- Designated category **MCGEN**
	- − No actual data is contained
	- − Instead provides a link to:
		- \rightarrow EVTGEN package version
		- \rightarrow O2DPG package version
		- \rightarrow . ini file in O2DPG
- Several standard MCGEN datasets exists already with auto submission enabled (2 slots per day)
- Event count for each dataset is normalized to 1 year CPU time, e.g.,
	- − 5B pp/Monash tune
	- − 6M PbPb/PYTHIA Angantyr

- Fast simulation core service category: Hyperloop on-the-fly simulation core service wagons
- Core services include smearing utilities for ALICE 3
	- − Accesses Look-up tables to smear McParticle tracks
	- − Look-up tables uses various configurations such as v2-0.5T and v2-2T
	- − Kept modular for efficient use
- ALICE 3 parametric TOF PID \rightarrow straight to usable N_{sigma} values with multiple TOF detector possibilities
- ALICE 3 parametric RICH PID \rightarrow straight to usable N_{sigma} values with multiple RICH detector possibilities
- McParticles to tracks passthrough: creates tracks from McParticles with no smearing for testing

Backup - outwards/inwards treatment

1. Outward propagation step:

- − Initialize unsmeared track at decay point
- − Propagate outwards to find points of intercept with layers
- − Stop at outermost layer reached and initialize track with perfect parameter but large covariance matrix

2. Inward propagation step:

- − Stop at each layer and update track with perfect data point and covariance matrix from expected precision
- Final end point: original point of decay
- − Track parameters still perfect but covariance matrix represents degree of confidence in track \rightarrow necessary input for smearing

3. Smearing step:

- − Diagonalize covariance matrix and change parameter vector to eigenvector basis
- Smear parameter vector in eigenvector basis with Gaussian's with eigenvalue widths
- − Move back to standard parameter vector space

Backup - DCA comparison with LoI

