

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Status of fast simulations

Jesper K. Gumprecht¹² and David D. Chinellato¹

Oct 7 - 11, 2024 5th ALICE Upgrade Week in Kraków

¹Stefan Meyer Institute for Subatomic Physics ²Technical University of Vienna

Reminder: What are "fast simulations"?

- They are simulations where one makes use of already computed detector response
- No particle transport or full reconstruction workflow increases the overall simulation speed by several orders of magnitude
- Higher simulation speed means higher storage needs
 - \rightarrow Typical: 8-hour job fills 100TB disk!
- If one can avoid writing to disk one saves both ${\rm I}/{\rm O}$ time and storage

Event generation	Parametric detector response and track smearing	
	Particle transport Digitization Reconstruction AO2D producer	Analysis

On-the-fly simulations

- Simulations that are purely executed in memory, from event generation to final analysis
- One workflow in O2Physics comprised several highly configurable modules
- Existing o2sim flexibility is kept
 - $\rightarrow\,$ Access to built in or external generators
- o2-sim-mctracks-to-aod fills MC tables read by subsequent tracking and parametric PID tasks
 - $\rightarrow~$ Just as customizable as any regular analysis task
- Status: primary event to final analysis \rightarrow fully operational on Hyperloop

Track smearing with Look-up tables

Fast Analytical Tool

The FAT is what is used to smear tracks for a given input of track parameters and detector geometry.

Look-up Table

Contains several FAT solutions based on iterating over ranges in p_T , η , and multiplicity.

- For a generated track with a given set of parameters we can consider the corresponding bins in the LUT, which already contains the solution for the smearing
- For the solutions that are stored in the LUTs, it is assumed that the track is from the primary vertex
- Each LUT corresponds to ${\sim}100\text{MB}$ that needs to be loaded in memory
- LUTs can also be generated from with other tools such as ACTS

On-the-fly tracker

- Load LUTs into memory: e, μ , π , K, and p
- Process generated Monte-Carlo tables
 - \rightarrow Initialize tracks with perfect Monte-Carlo information

Smeared track

- \rightarrow Detection efficiency
- \rightarrow Momentum
- \rightarrow Spatial position
- For each track we use solution in the corresponding p_T , η , and multiplicity bin to smear the given track
- When smearing a track the detection efficiency is also taken into account to decide whether a track was reconstructed or not
- Produce a track and collisions table, which is accessible in subsequent analysis tasks

TOF parametric response

- Creates an expected time-of-flight detector signal for a set of give parameters
- E.g., radius and timing resolution
- Accesses LUTs to smear $p_{\rm T}$ and η resolution
- Direct generation of N_{sigma} for analysis

RICH parametric response

- Similarly, we also create an expected ring-imaging Cherekov signal for another set of parameters
- Again, we use LUTs to smear $p_{\rm T}$ and η resolution
- Direct generation of N_{sigma} for analysis

Figures from presentation by Nicola at the ALICE 3 Simulation and Performance meeting

Example: Multi-charm analysis in fast simulations

$$\begin{split} \Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} + \pi^{+} & (c\tau \sim 77 \, \mu\text{m}) \\ \Xi_{c}^{+} \rightarrow \Xi^{-} + 2\pi^{+} & (c\tau \sim 132 \, \mu\text{m}) \end{split}$$

6-prong, total B.R: 5% (est) x 2.9 % = 2.5×10^{-3}

- Three primary-like pions: treated with the existing LUT-approach
- Before there was no way to deal with the weak decay in fast simulations
 - $\rightarrow\,$ For the letter of intent, the weak decay was treated with the full simulation
- Could we find a solution for treating weak decays in fast simulations?
 - \rightarrow Requires an unprecedented, large-scale use of fast treatment of very displaced tracks

Fast simulations of secondary particles

'FastTracker''

An implementation of the "FAT solver" in the OTF tracker that smears a given secondary track on a case-by-case basis.

- With the "FastTracker", we are able to fully consider R_{2D} and φ_p at an acceptable CPU cost
- Current status: minimal outwards/inwards treatment
- Relevant further developments
 - Energy loss
 - Multiple scattering

Cascade reconstruction

- Cascade daughters smeared using the FastTracker
- In addition to the FastTracker, strangeness tracking was also implemented in the on-the-fly tracker
 - Track reconstructed with daughter information updated with cascade hits in inner tracking layers
- Dramatically improves the ability to separate HF daughters from primary multi-strange
- Spatial resolution does not entirely match Lol results
 - \rightarrow Very likely due to missing e-loss and multiple scattering

Ξ_{cc}^{++} analysis: base selections and efficiency

Selections			
Ξ_{cc}^{++} mass window	0.015 GeV/ c^2		
Ξ_c^+ mass window	$0.015 { m GeV}/c^2$		
Minimum $\pi^+ p_T$ (from Ξ_{cc}^{++})	0.30 GeV/ <i>c</i>		
Minimum $\pi^+ p_T$ (from Ξ_c^+)	0.15 GeV/ <i>c</i>		
DCA between Ξ_{cc}^{++} daughters	200 µm		
DCA between Ξ_c^+ daughters	200 µm		
Minimum π^+ DCA _{xy} to PV (from Ξ_{cc}^{++})	10 µm		
Minimum π^+ DCA _{xy} to PV (from Ξ_c^+)	10 µm		
Minimum Ξ^- DCA _{xy} to PV	10 µm		
Minimum tracker hits for weak decays	6 hits		
η	± 1.5		

Proof of concept: Ξ_{cc}^{++} with fast simulations

- "FastTracker" tool operational with "on-the-fly" monte carlo generation; no content saved to disk
- State-of-the-art tracking: strangeness tracking included in the fast tracking tool
- Enormous flexibility when testing detector layouts is guaranteed
- Next step: scale signal and background according to realistic expectations and calculate a significance and study different detector configurations

Summary

- On-the-fly simulations are available on Hyperloop for primary event analysis
- New development to the OTF tracker, which considers weak decay daughters in a case-by-case basis
 - $\rightarrow\,$ First version already available in the O2Physics repository: <u>FastTracker.cxx</u>
- Future plans
 - To be implemented: e-loss & multiple scattering
 - Performance comparison with the LUTs produced by the FAT
 - ightarrow Since the 'FastTracker' is an implementation of the FAT solver, we should reach the same results!
 - $-\,$ Scale invariant mass peak and background, and do significance calculation
- The finalized tool is meant to contribute to
 - \rightarrow Scoping discussions
 - \rightarrow Studies for the TDR

Thank you for your attention!

Backup

Backup - Tools available on Hyperloop

- Designated category MCGEN
 - No actual data is contained
 - Instead provides a link to:
 - \rightarrow EVTGEN package version
 - \rightarrow **O2DPG package** version
 - \rightarrow .ini file in O2DPG
- Several standard MCGEN datasets exists already with auto submission enabled (2 slots per day)
- Event count for each dataset is normalized to 1 year CPU time, e.g.,
 - 5B pp/Monash tune
 - 6M PbPb/PYTHIA Angantyr

- Fast simulation core service category: Hyperloop on-the-fly simulation core service wagons
- Core services include smearing utilities for ALICE 3
 - Accesses Look-up tables to smear McParticle tracks
 - Look-up tables uses various configurations such as v2-0.5T and v2-2T
 - Kept modular for efficient use
- ALICE 3 parametric TOF PID \rightarrow straight to usable N_{sigma} values with multiple TOF detector possibilities
- ALICE 3 parametric RICH PID \rightarrow straight to usable N_{sigma} values with multiple RICH detector possibilities
- McParticles to tracks passthrough: creates tracks from McParticles with no smearing for testing

Backup - outwards/inwards treatment

1. Outward propagation step:

- Initialize unsmeared track at decay point
- Propagate outwards to find points of intercept with layers
- Stop at outermost layer reached and initialize track with perfect parameter but large covariance matrix

2. Inward propagation step:

- Stop at each layer and update track with perfect data point and covariance matrix from expected precision
- Final end point: original point of decay
- Track parameters still perfect but covariance matrix represents degree of confidence in track \rightarrow necessary input for smearing

3. Smearing step:

- Diagonalize covariance matrix and change parameter vector to eigenvector basis
- Smear parameter vector in eigenvector basis with Gaussian's with eigenvalue widths
- Move back to standard parameter vector space

Backup - DCA comparison with Lol

