

Updates from RICH simulation studies

Nicola Nicassio (University and INFN Bari) 5th ALICE Upgrade Week Krakow, October 7, 2024

Outline

Update on the latest bRICH PID performance

- PID performance from p-p to central Pb-Pb events
- Machine learning based PID vs classic HT method
- Option: effect gaseous radiator to enhance e^{\pm} PID

Full simulation of bRICH physics performance

- Acceptance and efficiency of $ho^0 o e^+ e^-$ and $D^0 o K^- \pi^+$
- Impact of bRICH on ho^0 and D^0 identification vs η and $p/p_{
 m T}$
- Testing oTOF alone, combined oTOF+bRICH and gas option

bRICH: Layout

Proximity-focusing RICH based on aerogel+SiPMs in a projective geometry

Components

- Aerogel: $L \approx 2 \text{ cm}$, n = 1.03
- SiPM-based photodetector
- 2x2 mm² cells, PDE(450 nm) > 40%

Geometry

- All tiles oriented toward nominal interaction point
- Full coverage to charged particles without overlaps
- Trapezoidal tile profile to maximize the acceptance

- **Segmentation**
- 24 sectors x 36 modules
- Sensor area $\approx 30.7 \text{ m}^2$
- Total N channels \approx 7M

bRICH performance simulation

Nicola Nicassio - University and INFN Bari, Italy

bRICH performance simulation

bRICH PID in central Pb-Pb using ML

Dataset

- 5k Pb-Pb (b < 3.5 fm), B = 2T
- ~ 20.0 M charged tracks at bRICH
- Composition: e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p, $ar{p}$

ML algorithm

- 5 x XGBoost for binary PID probs. of each species vs all other species
- Assigning PID with max. score or optimizing for dedicated analyses

ML vs HTM-based PID

- <u>Overall better PID effciency × purity</u> <u>achieved using ML w.r.t. HTM+Bayes</u>
- Note: Efficiency limits in HTM due to N_{HTM} decrease at sector boundaries
- Automatically learned in ML analysis
- <u>Slight ML worsening above 10 GeV/c</u>
- Limited statistics of high-p particles

Nicola Nicassio – University and INFN Bari, Italy

bRICH e^{\pm} **purity enhancement**

Goal

- Extend electron/positron identification above 4 GeV/c
- Required for dielectrons and quarkonia, e.g. J/ $\psi \rightarrow e^+e^-$

Strategy

- + Fill aerogel RICH gap with gas radiator having n \approx 1.0006
- e^{\pm} purity enhanced by looking at the size of gas clusters

Gas options

- Gases with large GWP (CF₄, C₄F₁₀, ...) must be avoided
- Solution: Gas mixtures, e.g. C₅F₁₀O (20%) + N₂ (80%)

$p_{th} \equiv$ momentum threshold for Cherenkov emission

n	β_{th}	p _{th} (GeV/c)					
		е	μ	π	К	р	
1,0006	0,9994	0,0147	3,0496	4,0284	14,2491	27,0815	

*Only cells fired by photons are considered

bRICH e^{\pm} **purity enhancement**

Goal

- Extend electron/positron identification above 4 GeV/c
- Required for dielectrons and quarkonia, e.g. J/ $\psi \rightarrow e^+e^-$

Strategy

- + Fill aerogel RICH gap with gas radiator having n \approx 1.0006
- e^{\pm} purity enhanced by looking at the size of gas clusters

Gas options

- Gases with large GWP (CF₄, C₄F₁₀, ...) must be avoided
- Solution: Gas mixtures, e.g. C₅F₁₀O (20%) + N₂ (80%)

$p_{th} \equiv$ momentum threshold for Cherenkov emission

n	β_{th}	p _{th} (GeV/c)					
		е	μ	π	К	р	
1,0006	0,9994	0,0147	3,0496	4,0284	14,2491	27,0815	

*Only cells fired by photons are considered

bRICH impact on ALICE 3 physics

$ho ightarrow e^+ e^-$ motivation

Measurements of the m_{ee} spectrum in the ρ mass region provide direct access to CSR mechanisms in the QGP like ρ - a_1 mixing

From LoI parametric simulation

$D^0 o K^- \pi^+$ motivation

Charm hadron correlations $(D^0 \overline{D}^0, D^0 D^{*+})$ give access to energy loss mechanisms in the QGP and search for exotic bound states

Simulation assumptions

- Generating single $\rho^0 \rightarrow e^+e^-$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
 + threshold *e* ID below π threshold
- Goal: Study $\rho^0 \rightarrow e^+e^-$ efficiency using bRICH alone, oTOF in bRICH (assuming 20 ps resolution) and gas

Daughter reconstruction

- Fluctuations of detected photons follow the projective segmentation
- Worsening of e^{\pm} reconstruction for $p_T \rightarrow 0.3$ GeV due to shallow angles for large curvature in magnetic field

Simulation assumptions

- Generating single $\rho^0 \rightarrow e^+e^-$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis + threshold e ID below π threshold
- Goal: Study $\rho^0 \rightarrow e^+e^-$ efficiency using bRICH alone, oTOF in bRICH (assuming 20 ps resolution) and gas

Acceptance

- Almost full acceptance to ρ daughters
- Loss of e^{\pm} for $\rho \ p_T \rightarrow 0$ and $|\eta| \rightarrow 2$
- They are detected by iTOF, oTOF, fTOF and fRICH, which are not included here

Simulation assumptions

- Generating single $\rho^0 \rightarrow e^+e^-$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
 + threshold *e* ID below π threshold
- Goal: Study $\rho^0 \rightarrow e^+e^-$ efficiency using bRICH alone, oTOF in bRICH (assuming 20 ps resolution) and gas

Efficiency

- Excellent coverage up to $p\approx 4~{\rm GeV/}c$
- oTOF ρ PID limited to $p\approx 1.4~{\rm GeV/c}$
- Improvement using oTOF + bRICH PID
- Coverage up to $p \approx 6$ GeV/c with gas

Simulation assumptions

- Generating single $\rho^0 \rightarrow e^+e^-$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
 + threshold *e* ID below π threshold
- Goal: Study $\rho^0 \rightarrow e^+e^-$ efficiency using bRICH alone, oTOF in bRICH (assuming 20 ps resolution) and gas

Efficiency

- Excellent coverage up to $p\approx 4~{\rm GeV/}c$
- oTOF ρ PID limited to $p\approx 1.6~{\rm GeV/c}$
- Minor gain using oTOF + bRICH PID
- Coverage up to $p \approx 6$ GeV/c with gas
- <u>Note</u>: Lower upper p_T limits vs $|\eta|$

Simulation assumptions

- Generating single $D^0 \to K^- \pi^+$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
- Goal: Study $D^0 \rightarrow K^-\pi^+$ efficiency using bRICH alone, oTOF in bRICH (assuming ideal 20 ps resolution)

Daughter reconstruction

- Fluctuations of detected photons follow the projective segmentation
- Most of the tracks with no detected photons are kaons below momentum threshold for Cherenkov emission
- $p_{th,\pi} \approx 0.6 \; GeV/c, p_{th,K} \approx 2 \; GeV/c$

Simulation assumptions

- Generating single $D^0 \rightarrow K^- \pi^+$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
- Goal: Study $D^0 \rightarrow K^-\pi^+$ efficiency using bRICH alone, oTOF in bRICH (assuming ideal 20 ps resolution)

Acceptance

- Almost full acceptance to D^0 daughters
- Loss of K/π for $p_T \rightarrow 0$ and $|\eta| \rightarrow 2$
- They are detected by iTOF, oTOF, fTOF and fRICH, which are not included here

Simulation assumptions

- Generating single $D^0 \rightarrow K^- \pi^+$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
- Goal: Study $D^0 \rightarrow K^-\pi^+$ efficiency using bRICH alone, oTOF in bRICH (assuming ideal 20 ps resolution)

Efficiency

- Stand-alone bRICH alone limited by inefficiency to K^- below $\approx 2 \text{ GeV/}c$
- oTOF mandatory for $D^0 p_T \rightarrow 0$
- Minor gain using oTOF + bRICH PID
- Coverage up to $p \approx 6$ GeV/c with gas

Simulation assumptions

- Generating single $D^0 \rightarrow K^- \pi^+$ events
- Assuming emission in (0,0,0) cm
- Using the same pattern recognition and PID cuts used for the pp analysis
- Goal: Study $D^0 \rightarrow K^-\pi^+$ efficiency using bRICH alone, oTOF in bRICH (assuming ideal 20 ps resolution)

Efficiency

- Excellent coverage up to $p \approx 4 \text{ GeV/}c$
- oTOF D^0 PID limited to $p \approx 1.6$ GeV/c
- Minor gain using oTOF + bRICH PID
- Coverage up to $p \approx 14$ GeV/c combining bRICH and oTOF PID
- <u>Note</u>: Lower upper p_T limits vs $|\eta|$

Conclusions

bRICH physics performace study

- The proposed RICH fulfills the ALICE 3 design PID requirements
- Simulations show huge potential impact on physics programme
 - Use of high-index gas very promising for extensive e^{\pm} PID
 - Next steps: Including fRICH, SiPM DCR and mutual track bkg. in high multiplicity events in $ho^0 o e^+ e^-$ and $D^0 o K^- \pi^+$ analysis

Other ongoing simulation studies

- Geometry optimization to fully include electronics and services
- Careful check of performance stability in high-DCR environment
- Machine learning-based PID with high DCR and track multiplicity

Thank you for your attention

Nicola.Nicassio@ba.infn.it

Backup

bRICH PID in p-p and central Pb-Pb

Angle reconstruction

- Based on Hough Transform method
- Timing cut on hit-track matching
- HTM *N*_{ph,min} cut on clustered hits

Classical PID analysis

• Bayesian approach + probability cut

Background sources

- Photons emitted by different tracks
- Aerogel Rayleigh scattered photons
- SiPM dark count hits (in DAQ gate)

Photodetector hit map of Pb-Pb event

bRICH – Option rectangular tiles (I)

bRICH – Option rectangular tiles (II)

MIP acceptance: trapezoidal tiles vs rectangular tiles

Nicola Nicassio – University and INFN Bari, Italy

bRICH: MIP acceptance vs σ_z (II)

MIP acceptance: trapezoidal tiles vs rectangular tiles

Nicola Nicassio – University and INFN Bari, Italy

bRICH PID in p-p and central Pb-Pb

Angle reconstruction

- Based on Hough Transform method
- Timing cut on hit-track matching
- HTM *N*_{ph,min} cut on clustered hits

Classical PID analysis

Bayesian approach + probability cut

Background sources

- Photons emitted by different tracks
- Aerogel Rayleigh scattered photons
- SiPM dark count hits (in DAQ gate)

Photodetector hit map of Pb-Pb event

