

NuonID Simulations: Scintillators

Performance in heavy-ions collisions

Jesús Eduardo Muñoz Méndez for MID working group

Oct 7, 2024

MID specifications

One of the proposals for the MID are plastic scintillators equipped with wavelength-shifting fiber and SiPM for readout

		Absorber	MID layer 1	MID layer 2
y-	Inner radius (m)	220	301	311
ckness:	Outer radius (m)	290	302	312
lengths	z range (m)	10	10	10.5
_	No. sectors in z	9	10	10
	No. sectors in φ	1	16	16
	Scint. bar length (cm)		99.8	123.5
	Scint. bar width (cm)		5.0	5.0
	Scint. bar thickness (cm)		1.0	1.0

layer 2

No. of bars 4048 in layer 1 3200 in layer 2

layer 1

Proton-proton results

- Granularity $5 \times 5 \text{ cm}^2$, machine learning, E_{dep} and time information were implemented
- Muon efficiency around 94% for $p_{\rm T} > 1.5~{\rm GeV/c}$
- Pion rejection at the level of 3-4%

Central (0-10%) Pb-Pb collisions *embedded* with signals from particle guns were used to train the BDT, considering the following variables

- Momentum before the absorbe
- Matching window ($\Delta\eta, \Delta\phi$)
- Number of bars activated around the extrapolation
- Highest energy deposition in the activated bars around to th extrapolation
- Arrival time

Central (0-10%) Pb-Pb collisions en bedded with signals from particle px_abso

0.08

0.06

0

Momentum before the absorber Matếhing window ($\Delta\eta, \Delta\phi$) Number of bars activated around fre extrapolation

Highest energy deposition in the activated bars around to the

extrăpolation 1 -0.5 0 0.5 1 1.5 2 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 DeltaPhi_center_L1 DeltaEta_center_L2

² guns were used to train the BDT, considering the following variables py_abso pz_abso

Central (0-10%) Pb-Pb collisions *embedded* with signals from particle guns were used to train the BDT, considering the following variables

Input variable: Bars_L2

- Momentum before the absorber
- Matching window $(\Delta \eta, \Delta \phi)$
- Number of bars activated
 a of bars activated
 a of bars activated
- Highest energy deposition in the activated bars around to the extrapolation

3 3.5 4 1 1.5 2 2.5 3 3.5 Bars_Linival time Bars_

2.5

Input variable: Time_Hit_L2

0.3 0.2

- Momentum before the absorber
- 0.9 Matching window ($\Delta\eta, \Delta\phi$)
- Numberoef bars activated around the extrapolation
- Highest energy deposition in the activated bars around to the extrapolation

4

6

8

Arrival time

10 12 14

Central (0-10%) Pb-Pb collisions embedded with signals from particle guns were⁰ used to² train the BDT, considering the following variables Bars_L2 Bars_L1

Heavy-lon results

- Muon efficiency around 94% for $p_{\rm T} > 1.5~{\rm GeV/c}$
- Pion rejection at the level of 3-5%

Heavy-lon results

- Muon efficiency around 94% for $p_{\rm T} > 1.5~{\rm GeV/c}$
- Pion rejection at the level of 3-5%

Slightly above to the the pion rejection factor obtained in pp simulations

J/w reconstruction

The MID will allow the reconstruction of J/ψ down to $p_{T} = 0$ via its dimuon decay channel

J/ψ reconstruction efficiency similar to LOI

J/v reconstruction

The MID will allow the reconstruction of J/ψ down to $p_{T} = 0$ via its dimuon decay channel

J/ψ reconstruction efficiency similar to LOI

J/v reconstruction

Fig. Inclusive J/ ψ production cross section at midrapidity in pp collisions

Disclaimer:

underestimation and overestimation in PYTHIA's predictions for J/ψ that needs to be compensated in further studies

J/ψ reconstruction (pp collisions)

Even though the signal-to-background ratio varies with the **pion rejection factors**...

...the significance is less affected, ensuring reliable detection of the signal across different conditions

J/ψ reconstruction (pp collisions)

Even though the signal-to-background ratio varies with the **pion rejection factors**...

...the significance is less affected, ensuring reliable detection of the signal across different conditions

J/v reconstruction (pp collisions)

*LOI simulations: no segmentation and ideal granularity

Agreement with the LOI results for a 1% rejection factor

Conclusions

• Muon efficiency around 94% for $p_{\rm T} > 1.5$ GeV/c in both pp and central Pb-Pb collisions

• **Pion rejection** at the level of 3-4% in pp of 3-5% in central Pb-Pb

• Significance doesn't have a big impact due to different pion rejection factors

Radiation Load Studies Update

Radiation load studies update

Updated values are on their way

WORK		LOI / FLUKA	at r = 0.5 cm
IN PROGREGO		previous ratio	current ratio
	TID	15.26	1.09
	NIEL	3.6	1.83
Ch flue	n. particle ence rate	1.36	0.98

Table 1. Ratio between the pp values reported in the LOI and the simulations in FLUKA (per operational month and assuming a running efficiency of 65%).

Thank you for your attention!

MID (plastic scintillator option)

Baseline option:

Low cost plastic scintillator bars (FNAL-NICADD) equipped with wave-length shifting fibers and SiPM

- **simplicity** (no need of gas mixture)
- excellent timing resolution (ns)
- good performance under the expected radiation load

	pp	Pb-Pb
TID (rad)	54	0.94
NIEL (1 MeV neq/cm ²)	3.4 x 10 ¹⁰	4.7 x 10 ⁸

Table. Radiation load in the MID simulated with FLUKA for the Run 5+6 period

- FNAL-NICADD scintillators have a decrease in light yield of ~5% after a dose of 1 Mrad [FERMILAB-PUB-05-344]
- Our typical signals ~40 photoelectrons, therefore single photoelectron detection with the SiPM is not required (impossible at 10¹¹ MeV neq/ cm² at room temp.) [Nucl. Instrum. Meth. Phys. Res A, A 922 (2019)]

