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A Common Tracking Software Project
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Example of integration into experiment’s framework:
§ Being developed since 2016: Github
§ Based on experience with track reconstruction in ATLAS 
§ Experiment- and framework-independent toolkit
§ High-level track reconstruction tools 

o agnostic to the details of the detection 
technologies and magnetic field configuration

Why interesting for us: 
§ Allows track reconstruction for ALICE 3 geometry in the full range |η| < 4 
§ Our current O2 software tailored for central barrel reconstruction

Overview:
Comp. and Soft. for Big Science, 6, 8 (2022)
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https://github.com/acts-project/acts
https://link.springer.com/article/10.1007/s41781-021-00078-8


Some ACTS “clients”
§ ACTS Vertex reconstruction in Run-3 
§ Full ACTS powered reconstruction for Phase-2

Full ACTS-powered track reconstruction

Full ACTS- powered track reconstruction

Electron-Ion Collider (EIC) software stack,         
common track reconstruction software based on ACTS

Test implementation for CEPC design study 

ACTS workshop, Nov 2023
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… also NA60+, LDMX, STCF, Lohengrin, BGV
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https://indico.cern.ch/event/1295479/timetable/


Tracker layout in ACTS
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gdml/root ACTS representation (cylinders + disks)
with material mapped on surfaces

ALICE 3 tracker geometry

R = 0.8 m

L = 8 m
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Reconstruction: the ”full chain” 

Measurements

A. Salzburger, ACTS workshop, Nov 2023
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Seeds = triplets of points          
to initialize tracking 
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https://indico.cern.ch/event/1295479/contributions/5616016/attachments/2747644/4781460/2023-11-07-ACTS-WS-Introduction.pdf


Reconstruction: the ”full chain” 

Measurements

A. Salzburger, ACTS workshop, Nov 2023
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1.  Multiple track seeds per particle
(a seed = triplet of points)

2. Combinatorial Kalman Filter à branching
(accepting multiple hits on a layer within a χ2 window)

Problems we had in 2023:
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Reconstruction: the ”full chain” 

Measurements

A. Salzburger, ACTS workshop, Nov 2023
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1.  Multiple track seeds per particle
(a seed = triplet of points)

2. Combinatorial Kalman Filter à branching
(accepting multiple hits on a layer within a χ2 window)

Problems we had in 2023:

ACTS updates 2024:
Significant changes in CKF
In particular, two options:
1. Seed de-duplication
2. Outward-inward fitting

Current version used in this talk: 36.3
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https://indico.cern.ch/event/1295479/contributions/5616016/attachments/2747644/4781460/2023-11-07-ACTS-WS-Introduction.pdf
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CKF mode:
outward only
outward+inward

ACTS

§ Two-way track finding allows to recover missing inner clusters, 
improving efficiency

Demonstration: outward+inward Combinatorial KF

geometry: March 2024
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Seeding only in 
Middle Layers

(excluding IRIS layers)

Two-way CKF OFF ON
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§ Two-way track finding allows to recover missing inner clusters, 
improving efficiency

§ Crucial also e.g. for DCA xygeometry: March 2024
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§ Central Pb-Pb: ~40% faster with de-duplication=ON

4− 3− 2− 1− 0 1 2 3 4
η

0

0.2

0.4

0.6

0.8

1

D
up

lic
at

e 
ra

te

seed deduplication ON
seed deduplication OFF

=5.36 TeVsPb-Pb central, 
 > 0.2 GeV/c

T
ACTS, B = 2T, p

Demonstration: seed de-duplication for CKF
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seeding in 3 inner + 4 middle layers

(~130 sec / ev)
TrackFinding printouts:
- total seeds: 193k
- deduplicated seeds: 58k
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Which layers are actually optimal for track seeding?
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§ Seeding from inner+middle layers gives reduced efficiencies, 
in contrast to seeding from inner-only layers
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§ Seeding from inner+middle layers gives reduced efficiencies, 
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… and also increased duplication 
and fake track rates…
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twoWay=On
seedDeduplication=On
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§ Seeding is still the main issue 
for total tracking efficiency

§ For found seeds, tracking efficiency is >95% 
within |η|<3.5

nCls>=5
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PID hypothesis for tracking
§ PID hypothesis in ACTS is propagated together with track parameters 

from seeds to final tracks
§ Pions are the default  à try protons with proton hypothesis:

Low pT~0.4 GeV/c: 2-3% gain in proton efficiency ~5% better proton DCAxy
.. however, low-pT resolution worse by ~30%.

Particle hypothesis for tracking:

nCls>=7
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… § PID hypothesis in ACTS is propagated together with track parameters 
from seeds to final tracks

§ Pions are the default  à try protons with proton hypothesis:

Low pT~0.4 GeV/c: 2-3% gain in proton efficiency

Particle hypothesis for tracking:

nCls>=7
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Can we assign PID hypotheses for each track?
§ One would have to hack the code…

o e.g. assume pions and afterwards refit the found track 
using PID from TOF

§ Somewhere here we hit the boundary of the current     
ACTS Examples… 
o The usual argument is that experiments will have to come 

up with their own framework if it gets too complicated.
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PID hypothesis for tracking
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Last (geometrical) note about seeding

§ If seeding is done in innermost layers 
(to have 3-point “tracklets”):
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a small gap b/n Barrel and Endcap 
influence the performance
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Segmentation of Middle and Outer tracker barrel

Daniel Battistini
Matteo Concas
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§ Implementation of a realistic segmentation in the geometry of the detector is in progress
§ To be tried with ACTS (currently – simple cylinders in barrel)
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§ Currently, ITS2 ROF in Pb-Pb is 15 μs  
§ Can we keep the same 15 μs ROFs for Pb-Pb in ALICE3?

Pb-Pb @100 kHz (pileup μ = 0.01)

based on real filling schemes
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ROF = 15 μs: 
in 10% cases, >=4 coll. per ROF
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§ Currently, ITS2 ROF in Pb-Pb is 15 μs  
§ Can we keep the same 15 μs ROFs for Pb-Pb in ALICE3? à Try tracking (with ACTS)

based on real filling schemes
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Pb-Pb @100 kHz (pileup μ = 0.01)

pp @ 24MHz (pileup μ = 1.2)
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§ Visible drop of the tracking efficiency with high in-ROF pileup
o yet another thing to optimize

Tracking Efficiency for central Pb-Pb + pileup
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Pb-Pb @100 kHz



Amplitude measurement 
via Time-Over-Threshold
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Standard operation mode

Berkin Ulukutlu
Henrik Fribert§ Similar to color runs in ITS2

(see slide 18 in ALICE week talk)
• Over sampling the signal
à measure same hit multiple times

• Signal decay time (ToT) depends on signal amplitude 
(deposited charge) 

Readout Frames

21I. Altsybeev, Outer tracker simulations, AUW Oct 2024

https://indico.cern.ch/event/1425523/contributions/5995737/attachments/2892226/5070385/ITS_report_ALICE_week_July2024_2.pdf
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Amplitude dependent output
But data rate too high!

ToT operation modeAmplitude measurement 
via Time-Over-Threshold
§ Similar to color runs in ITS2

(see slide 18 in ALICE week talk)
• Over sampling the signal
à measure same hit multiple times

• Signal decay time (ToT) depends on signal amplitude 
(deposited charge) 

• Data rate becomes too high to be feasible

Berkin Ulukutlu
Henrik Fribert

Readout Frames

I. Altsybeev, Outer tracker simulations, AUW Oct 2024 22

https://indico.cern.ch/event/1425523/contributions/5995737/attachments/2892226/5070385/ITS_report_ALICE_week_July2024_2.pdf


t

An
al

og
 si

gn
al

Re
ad

ou
t s

tr
ob

e
Di

gi
ta

l o
ut

pu
t t

t

Extend signal

Amplitude dependent output
Only doubled data rate!

ToT operation modeAmplitude measurement 
via Time-Over-Threshold
§ Similar to color runs in ITS2

(see slide 18 in ALICE week talk)
• Over sampling the signal
à measure same hit multiple times

• Signal decay time (ToT) depends on signal amplitude 
(deposited charge) 

• Data rate becomes too high to be feasible

§ Front-end sensitive to both rising and falling edge 
à data rate only doubled from standard operation mode

Berkin Ulukutlu
Henrik Fribert

ALICE3: use the time difference for PID?..

Readout Frames
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https://indico.cern.ch/event/1425523/contributions/5995737/attachments/2892226/5070385/ITS_report_ALICE_week_July2024_2.pdf


PID Performance estimation

§ Average energy loss signal measured over 11 hits

§ Separation of protons up to ~500 MeV/c particle momentum

Very preliminary!

Berkin Ulukutlu
Henrik Fribert
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Potential use cases 
• Improved PID for low pT tracks and nuclei
• Seeding and ambiguity resolving
• Fake-hit rejection via ToT cuts

• Noise hits do not lead to long ToT signal
• Effect on efficiency needs to be studied for different configurations

Challenges
• ToT measurement not applicable for high pixel occupancies
• Complication of tracking due to ”phantom” hits from ToT-end signal

• Introducing an additional bit (rising/falling edge) might be necessary

Outlook 
• Introducing ToT measurement into ACTS to estimate impact on tracking
• More detailed Geant4 simulations for differential PID performance based on ToT-

resolution

25

PID Performance estimation Berkin Ulukutlu
Henrik Fribert
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Concept to be proved



§ Important tracking improvements in ACTS, including: 
o outward+inward tracking, seed deduplication 
o now we can fairly well operate at multiplicities of central Pb-Pb

§ If continue using ACTS, we will soon need to customize it for ALICE3:
o use our own seeding (CA)? (via “code intervention” or via plug-in mechanism)
o PID hypothesis, etc.

§ Segmentation of layers is added to the geometry à to be tried with ACTS
§ ROF size for Pb-Pb – first performance checks
§ PID using time difference b/n rising and falling edges of amplitudes? à concept to be proved  

Summary
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Backup
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A Common Tracking Software Project
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Full chain:
gen. particles à sim. hits à digitization 
à seeding à track finderà track ambiguity resolver

Full geometry (GEANT) ACTS tracking geometry

§ can be run as a simple Python script

Conversion of the geometry

Example of integration into experiment’s framework:

Overview:
Comp. and Soft. for Big Science, 6, 8 (2022)

representative layer

Implementation for sPHENIX
Comp. and Soft. for Big Science, 5, 23 (2021)

github , acts_alice3 

https://link.springer.com/article/10.1007/s41781-021-00078-8
https://link.springer.com/article/10.1007/s41781-021-00068-w
https://github.com/acts-project/acts
https://github.com/plariono/cern_scripts/tree/main/acts_alice3
https://indico.cern.ch/event/902132/
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ALICE 3 LoI – arxiv.2211.02491 

R = 0.8 m

L = 8 m

L ≈ 70 cm

Vertex detector (IRIS)

r ≈ 2.5 cm

first layer at midrapidity: 
5 mm from beam!

secondary 
beampipe

https://arxiv.org/abs/2211.02491


How to prepare a layout?  
2) Do “material mapping”
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§ “scan” geometry with a particle gun with GEANT4, 
§ project material on pre-defined surfaces

should be ~1
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X/
X 0

à .json file
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pp collisions: 18 ROFs per LHC orbit, each ROF 5 μs (198 BCs)

bunch crossing

ITS2 Readout Frames in Run 3

RO
F 

bo
rd

er

LHC22o apass6, 526641

I. Altsybeev, A3Days, June 2024

§ Cluster loss on the ROF boundary due to the ALPIDE time walk: 
o "Time walk" determines the variations of the time distance between when a particle crosses 

the detector and the corresponding pulse in the front-end goes above the threshold



ALICE3 IT-OT ROF: 500 ns (20 BCs)
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ITS2 ROF length in pp is 5 μs (198 BCs)

§ The time walk in ITS3 is expected to be similar 
to ITS2 

§ If assume the same also for IT-OT of ALICE3,       
+ take narrower ROFs of 500 ns
 à the “gaps” in performance can even overlap!
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§ ROF border effect should be very significant for short ROF lengths (500 ns for IT/OT @ ALICE 3)

§ Multi-ROF tracking allows one to recover tracking efficiency in ROFs of ALICE3
o demonstrated with simulations (assuming the same time-walk as in ITS2)

§ The reduction of the time walk allows to recover the in-ROF rec. efficiency, important aspect of R&D
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Efficiency vs pT at different pp pileup
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Updated March 25:
now with reconstructed seeds & in-ROF pileup
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Track parameterization:
local coordinates of the surface + global momentum + timing info 

ACTS Event Data Model
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§ Measurements can be represented as subsets of the full bound parameter space

possible types of measurements

ACTS Event Data Model

A. Salzburger, ACTS workshop, Nov 2023
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https://indico.cern.ch/event/1295479/contributions/5616016/attachments/2747644/4781460/2023-11-07-ACTS-WS-Introduction.pdf

