

(Outer) tracker simulations

Berkin Ulukutlu, Henrik Fribert, Daniel Battistini, Igor Altsybeev (TUM), Pavel Larionov (Inha University)

> ALICE Upgrade Week October 7, 2024

A Common Tracking Software Project

Overview: <u>Comp. and Soft. for Big Science, 6, 8 (2022)</u>

Example of integration into experiment's framework:

- Being developed since 2016: <u>Github</u>
- Based on experience with track reconstruction in ATLAS
- Experiment- and framework-independent toolkit
- High-level track reconstruction tools
 - agnostic to the details of the detection
 technologies and magnetic field configuration

Why interesting for us:

- Allows track reconstruction for ALICE 3 geometry in the full range $|\eta| < 4$
- Our current O2 software tailored for central barrel reconstruction

Some ACTS "clients"

- ACTS Vertex reconstruction in Run-3
- Full ACTS powered reconstruction for Phase-2

Full ACTS-powered track reconstruction

Full ACTS- powered track reconstruction

Electron-Ion Collider (EIC) software stack, common track reconstruction software based on ACTS

Test implementation for CEPC design study

... also NA60+, LDMX, STCF, Lohengrin, BGV

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

Tracker layout in ACTS

Reconstruction: the "full chain"

to initialize tracking

Reconstruction: the "full chain"

 <u>Multiple</u> track seeds per particle (a seed = triplet of points)

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

2. <u>Combinatorial</u> Kalman Filter \rightarrow branching (accepting multiple hits on a layer within a χ^2 window)

Reconstruction: the "full chain"

 <u>Multiple</u> track seeds per particle (a seed = triplet of points)

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

2. <u>Combinatorial</u> Kalman Filter \rightarrow branching (accepting multiple hits on a layer within a χ^2 window)

ACTS updates 2024: Significant changes in CKF In particular, two options:

- 1. Seed de-duplication
- 2. Outward-inward fitting

Current version used in this talk: 36.3

Demonstration: outward+inward Combinatorial KF

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

9

Demonstration: seed de-duplication for CKF

seeding in 3 inner + 4 middle layers

Central Pb-Pb: ~40% faster with de-duplication=ON (~130 sec / ev)

TrackFinding printouts:

- total seeds: 193k

- deduplicated seeds: **58k**

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

Which layers are actually optimal for track seeding?

 Seeding from inner+middle layers gives reduced efficiencies, in contrast to seeding from inner-only layers

I. Altsybeev, Outer tracker simulations, AUW Oct 2024

Which layers are actually optimal for track seeding?

 Seeding from inner+middle layers gives reduced efficiencies, in contrast to seeding from inner-only layers ... and also increased duplication and fake track rates...

twoWay=On seedDeduplication=On

Seeding vs tracking efficiency in pp and central Pb-Pb

 Seeding is still the main issue for total tracking efficiency For found seeds, tracking efficiency is >95% within |η|<3.5

PID hypothesis for tracking

245 ∨ def addSeeding(

	• • •
271	<pre>particleHypothesis: Optional[</pre>
272	acts.ParticleHypothesis
273] = acts.ParticleHypothesis.pion

- PID hypothesis in ACTS is propagated together with track parameters from seeds to final tracks
- Pions are the default → try protons with proton hypothesis:

Low $p_T \sim 0.4$ GeV/c: 2-3% gain in proton efficiency

~5% better proton DCAxy

.. however, low- p_T resolution worse by ~30%.

PID hypothesis for tracking

245 ∨ def addSeeding(

	• • •
271	<pre>particleHypothesis: Optional[</pre>
272	acts.ParticleHypothesis
273] = acts.ParticleHypothesis.pion

- PID hypothesis in ACTS is propagated together with track parameters from seeds to final tracks
- Pions are the default → try protons with proton hypothesis:

Low $p_T \sim 0.4$ GeV/c: 2-3% gain in proton efficiency

Can we assign PID hypotheses for each track?

- One would have to hack the code...
 - e.g. assume pions and afterwards refit the found track using PID from TOF
- Somewhere here we hit the boundary of the current ACTS Examples...
 - The usual argument is that experiments will have to come up with their own framework if it gets too complicated.

Last (geometrical) note about seeding

 If seeding is done in innermost layers (to have 3-point "tracklets"):

a small gap b/n Barrel and Endcap influence the performance

Segmentation of Middle and Outer tracker barrel

Daniel Battistini Matteo Concas

- Implementation of a realistic segmentation in the geometry of the detector is in progress
- To be tried with ACTS (currently simple cylinders in barrel)

Number of collisions in Tracker Readout frames

- Currently, ITS2 ROF in Pb-Pb is 15 μs
- Can we keep the same <u>15 μs ROFs for Pb-Pb</u> in ALICE3?

Number of collisions in Tracker Readout frames

- Currently, ITS2 ROF in Pb-Pb is 15 μs
- Can we keep the same <u>15 μs ROFs for Pb-Pb</u> in ALICE3?

 \rightarrow Try tracking (with ACTS)

Tracking Efficiency for central Pb-Pb + pileup

Visible drop of the tracking efficiency with high in-ROF pileup
 o yet another thing to optimize

Amplitude measurement via Time-Over-Threshold

- Similar to color runs in ITS2 (see slide 18 in ALICE week talk)
 - Over sampling the signal
 → measure same hit multiple times
 - Signal decay time (ToT) depends on signal amplitude (deposited charge)

Berkin Ulukutlu

Henrik Fribert

Only hit/ no-hit info in output

Amplitude measurement via Time-Over-Threshold

 Similar to color runs in ITS2 (see slide 18 in ALICE week talk) Berkin Ulukutlu Henrik Fribert

- Over sampling the signal
 → measure same hit multiple times
- Signal decay time (ToT) depends on signal amplitude (deposited charge)
- Data rate becomes too high to be feasible

Amplitude measurement via Time-Over-Threshold

- Similar to color runs in ITS2 (see slide 18 in ALICE week talk)
 - Over sampling the signal
 → measure same hit multiple times
 - Signal decay time (ToT) depends on signal amplitude (deposited charge)

Berkin Ulukutlu

Henrik Fribert

- Data rate becomes too high to be feasible
- Front-end sensitive to both rising and falling edge
 - ightarrow data rate only doubled from standard operation mode

PID Performance estimation

Potential use cases

- Improved PID for low p_T tracks and nuclei
- Seeding and ambiguity resolving
- Fake-hit rejection via ToT cuts
 - Noise hits do not lead to long ToT signal
 - Effect on efficiency needs to be studied for different configurations

Challenges

- ToT measurement not applicable for high pixel occupancies
- Complication of tracking due to "phantom" hits from ToT-end signal
 - Introducing an additional bit (rising/falling edge) might be necessary

Outlook

- Concept to be proved Introducing ToT measurement into ACTS to estimate impact on tracking
- More detailed Geant4 simulations for differential PID performance based on ToTresolution

Henrik Fribert

Berkin Ulukutlu

Summary

٦Л

- Important tracking improvements in ACTS, including:
 - outward+inward tracking, seed deduplication
 - o now we can fairly well operate at multiplicities of central Pb-Pb
- If continue using ACTS, we will soon need to customize it for ALICE3:
 - use our own seeding (CA)? (via "code intervention" or via plug-in mechanism)
 - PID hypothesis, etc.
- Segmentation of layers is added to the geometry \rightarrow to be tried with ACTS
- ROF size for Pb-Pb first performance checks
- PID using time difference b/n rising and falling edges of amplitudes? → concept to be proved

Detector

Context objects

Source links

Measurements

Experiment

Example of integration into experiment's framework:

Tracking,

Vertexing,

ACTS

Tracks

Vertices

Experiment

a(ts, A Common <u>Tracking</u> Software Project

Overview: Comp. and Soft. for Big Science, 6, 8 (2022) Implementation for sPHENIX Comp. and Soft. for Big Science, 5, 23 (2021)

github, acts alice3

Full chain:

[sim] gen. particles \rightarrow sim. hits \rightarrow digitization [*rec*] \rightarrow seeding \rightarrow track finder \rightarrow track ambiguity resolver

can be run as a simple Python script

alysis

http://www.seconder.com/second-sec 12 estimatedparams.root measurements.root http://www.commenter.com/inal.root http://www.contenter.com/ https://www.commance_ambi.root https://www.ce.ckf.root http://www.ce_seeding.root http://www.commenter.com/states_ambi.root trackstates_ckf.root tracksummary_ambi.root

🗄 🔄 ckf_pion_gunMult35_1kEv_pt05GeV_B1

28

ALICE 3 Lol – <u>arxiv.2211.02491</u>

Table 8: Geometry and key specifications of the tracker.

How to prepare a layout?2) Do "material mapping"

ТΠ

project material on pre-defined surfaces

ITS2 Readout Frames in Run 3

pp collisions: **18 ROFs** per LHC orbit, each ROF 5 μs (198 BCs)

- Cluster loss on the ROF boundary due to the ALPIDE time walk:
 - "Time walk" determines the **variations of the time distance** between when a particle crosses the detector and the corresponding pulse in the front-end goes above the threshold

"Projection" of the border effect on ALICE 3 ROFs

- The *time walk* in ITS3 is expected to be similar to ITS2
- If assume the same also for IT-OT of ALICE3,
 + take narrower ROFs of 500 ns

 \rightarrow the "gaps" in performance can even overlap!

I. Altsybeev, A3Days, June 2024

- ROF border effect should be very significant for short ROF lengths (500 ns for IT/OT @ ALICE 3)
- Multi-ROF tracking allows one to recover tracking efficiency in ROFs of ALICE3
 - o demonstrated with simulations (assuming the same time-walk as in ITS2)
- The reduction of the time walk allows to recover the in-ROF rec. efficiency, important aspect of R&D

Efficiency vs p_T at different pp pileup

Updated March 25: now with <u>reconstructed seeds & in-ROF pileup</u>

ACTS Event Data Model

Track parameterization:

local coordinates of the surface + global momentum + timing info

ACTS Event Data Model

possible types of measurements

Measurements can be represented as *subsets* of the full bound parameter space