

Inner tracker studies

P. Larionov¹ ¹Inha University (KR) pavel.larionov@cern.ch

Thanks to: A. Dainese, C. Gargiulo, M. Concas, A. Di Mauro, F. Reidt, C. van Veen, I. Altsybeev

5th ALICE Upgrade week * Krakow, Poland * 10.10.2024

- Updates of the tracker geometry description in O²
- Updated reconstruction results using ACTS

- Updates of the tracker geometry description in O²
- Updated reconstruction results using ACTS

Engineering team: ALICE 3 tracker services

- Updates of the tracker geometry description in O²
- Updated reconstruction results using ACTS

Services not included

A-side C-side IRIS tracker IRIS service module

- Updates of the tracker geometry description in O²
- Updated reconstruction results using ACTS

Services not included

Outer and middle barrel layer services in O²

Detectors/Upgrades/ALICE3/TRK/simulation/src/TRKServices.cxx

M. Concas

Vacuum vessel & beampipe description in O²

Detectors/Upgrades/ALICE3/Passive/src/Pipe.cxx

C. van Veen

O² updated beam pipe (green), vacuum vessel (grey)

Vacuum vessel & beampipe description in O²

Detectors/Upgrades/ALICE3/Passive/src/Pipe.cxx

C. van Veen

- Beam pipe radius from 37 mm to 56 mm
- Beam pipe on C-Side will be longer to be able to access iris tracker
- Disk inner radius of ML and OT (FT3 in O2) from 50 mm to 70 mm
- L3 of barrel layers (TRK in O2) from 50 mm to 70 mm

IRIS service module estimated material

All materials "mapped" to a tube, to be added to the beam pipe thickness Disk thickensses have to be decreased by factor sin(3.5deg) = 0.06, where 3.5deg is the polar angle for eta=3.5

- First Aluminium "disk": 0.5mm*sin(3.5deg)= 0.03mm, X0=89mm \rightarrow x/X0=0.0003 (0.03%)
- Aluminium flat tubes: 2crossings*0.5mm = 1mm, X0=89mm \rightarrow x/X0=0.011 (1.1%) 2)
- 3)
- Second Aluminium "disk": 5mm*sing(3.5deg)=0.3mm, X0=89mm \rightarrow x/X0=0.003 (0.3%) 4)

Total to be added to beam pipe 1.33mm of Al, x/X0 = 1.43% OR Total to be added as disk adjacent to last VD disk. 1.33mm/sin(3.5deg) = 21.8mm of Al, x/X0 = 0.24 (24%)

A. Dainese C. Gargiulo F. Reidt

Bellows: Ncrossings*0.4mm*sin(3.5deg), X0? Same as Al? \rightarrow x/X0 = Ncrossings*0.00024 \rightarrow neglect?

Updates in the O² geometry

1.33 mm Al added

Beampipe C-side R = 56 mm

C-side: Disks $R_{in} = 70 \text{ mm}$

A-side: Disks $R_{in} = 50 \text{ mm}$

> Middle & outer layer services

Geantino scan

Material composition*

*recorded up to R = 68 cm

Material composition

Thickness of the IRIS petal was updated

PETAL CASE Target 0.15mm wall Beryllium, Alternative Albemet (60% beryllium)

Geantino scan "No services"

L3 at 37.5 mm (will be moved to 70 mm)

p_T resolution

C-side

A-side

p_T resolution

C-side

A-side

DCA_{xy} resolution

C-side

Reconstruction efficiency

Pions, $3 < \eta < 4$

Simulation:

Pythia pp 14 TeV pile-up 500

 $dN/d\eta \approx 2300$

Reconstruction efficiency

Pions, $p_T = 1 \text{ GeV/c}$

Simulation:

Pythia pp 14 TeV pile-up 500 $dN/d\eta \approx 2300$

)

No hits here anymore. L3 moved from 37.5 mm to 70 mm (both A and C sides)

Simulation: Pythia pp 14 TeV pile-up 500 $dN/d\eta \approx 2300$

Summary and next steps

- ALICE 3 O² geometry is evolving
- IRIS service module: first estimate of the material

• p_{T} resolution: approx. **×2 at** η = 4 on C-side due to the service module

- Reconstruction efficiency: both A and C sides affected at $3 < \eta < 3.4$
 - TRK L3 moved: 37.5 mm → 70 mm
 - Address the gap between the L2 and L3 disks (seeding strategy?)
- Update the efficiencies including the CKF inward search
- Include the services for the outer disks (see talk by R. Sadek)

Backup

Fake rate

All, 3 < η < 4

Simulation:

Pythia pp 14 TeV pile-up 500 dN/d $\eta \approx 2300$

Reconstruction efficiency, tracks with LO hit

All, $p_T = 1 \text{ GeV/c}$

Simulation:

Pythia pp 14 TeV pile-up 500 dN/d $\eta \approx 2300$

Reconstruction efficiency

Reconstructable particles are defined as:

Those which produced at least 7 hits in the detector layers and

having $p_T >= 100 \text{ MeV/c}$

Efficiency defined as:

Fraction of particles from the selection above which have 100% association with tracks

Fake rate:

Fraction of reco tracks which aren't 100% associated with particles

•

Geometry

R = 7 cm

The selection shows in which layers the seeds are created

