

ALICE 3 detector scope and physics performance

5th ALICE Upgrade Week, Kraków, 8 October 2024

Andrea Dainese (INFN Padova), Antonello Di Mauro (CERN)

Scoping Document: Status and Review

- Scoping Document ("public part") submitted to LHCC (accessible here)
 - Thanks to Editorial Group, in particular the WG coordinators, and IRC!
- Now working on the "confidential part":
 - Money matrix (FAs vs subsystems)
 - Personnel matrix (institute FTEs vs subsystems)
- Review by LHCC during the next two meetings, aim to conclude by March
- Summary of scoping scenarios:
 - v1 reference detector, very similar to Lol
 - v2-2T: -12% cost; clear impact without ECal on specific parts of the programme
 - **v2-1T**: -20% cost; degradation of most HF measurements, especially at forward rapidity (y)
 - **v3 (reduced acc.)**: -32% cost; unique programme remains, but loss of *y*-dependent studies
- No option with L3 magnet: large degradation even for v3
 - This question likely to come back due to large SC magnet cost \rightarrow is a version with TPC conceivable?

Reference detector: "Layout version 1"

- Changes compared to Lol version:
 - Changes in barrel/disks transitions in view of integration and installation
 - Two Forward Detectors based on scintillator disks added on each side at $4 < |\eta| < 7$: luminometers, event-activity measurement and veto
 - Reduced FCT acceptance: $3 < \eta < 5 \rightarrow 4 < \eta < 5$; more studies in progress (detector not fully part of baseline)

FD

(-7 < n < -4

Reference detector: "Layout version 1"

D.Chinellato, M. Concas

Detector scoping options: version 2

Detector scoping options: version 3

- SC magnet B=1T, length=5.5m
- $|\eta| < 2.5$ tracker, $|\eta| < 2$ with PID
- No fTOF, fRICH disks
- OT |z|<2.3m
- Only 3 OT disks and with R_{in}~20cm, defined by |η|=2.5

- 3 ML disks with $R_{in} \sim 10$ cm, defined by $|\eta| = 2.5$
- No VD disks
- Shorter VD and ML layers
- OT, iTOF, oTOF, bRICH, MID unchanged
- Further descoping (v3-b): bRICH $|\eta|$ <0.8

FCT studies

FoCal in ALICE 3?

- Combined acceptances of ALICE 3 and FoCal \rightarrow 10 units in η
- Forward di-jets and γdir+jet would allow probing a wide range of x values
- FoCal on the A side of ALICE setup, at 7 < z < 8.5 m
 - compatible with ALICE 3 setup, including the FCT, which would be on the same side at 4.6 < z < 5.5 m
- Aspects to be investigated:
 - Integration
 - Radiation damage on Si-detectors of FoCal-E and on SiPMs of FoCal-H

Costs of scoping options

Version	Cost (MCHF)	Difference to v1
Reference detector layout v1	148.2	
Without ECal	-18.1	-12%
Smaller radius of magnet	-6.3	
Smaller radius of absorber and MID	-0.4	
Detector layout v2-2T	123.4	-17%
Magnetic field of 1 T	-5.1	
Detector layout v2-1T	118.3	-20%
Without TOF and RICH disks	-3.0 - 4.3	
OT disk surface reduction	-5.0	
IT disk surface reduction	-2.0	
Shorter magnet (1 T)	-3.0	
Detector layout v3-a	101.0	-32%
Smaller RICH acceptance	-6.5	
Detector layout v3-b	94.5	-36%
Common items	+22.0	
Additional cost with FCT	+3.45	

Layout v3: D-D* femtoscopy

- **D-D* femtoscopy**: larger uncertainty, especially in pp collisions (blue points)
- Reduced sensitivity to source size dependence of correlation function, which is crucial to test D-D* hypothesis for exotic cc states like T_{cc}

D.Battistini

Layout v3: D-Dbar azimuthal correlations

D-Dbar away-side width precision
 4.5% (v2-1T) → 11.5% (v3)
 o with 2T: 3.5% → 10%

- 11.5% statistical precision is quite small, compared to modification predicted by models
- But difference between effects of collisional and radiative energy loss also quite small

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

Layout v3: vector mesons in UPCs

- UPCs (rho' → 4pi as example): reduction of acceptance and photon energy range
 - Acceptance |eta|<4: 40%
 - Acceptance |eta|<3: 28%
 - Acceptance |eta|<2.5: 21%
 - Acceptance |eta|<0.9: 2%
- → v3 still x10 increases wrt current acceptance; could be x15 with |eta|<3
- 2<|eta|<2.5 (or 3?) with tracking and no PID: should not be a big limitation in UPCs, because combinatorial background is low

12

Layout v3-b: impact on dielectrons 30-50% Pb-Pb Vshin = 5.02 TeV bRICH acceptance reduced to etal<0.8 for In I • $|\eta_1| < 1.250$ $p_{T_{e}} > 0.2 \text{ GeV/c}$ $|\eta| < 1.750$ $p_{\rm Tee} > 0 \, {\rm GeV}/c$ **Dielectrons:** $|\eta_0| < 2.500$ Ratio to significance $DCA_{ee} < 1.2 \sigma$ \rightarrow Significance scales with sqrt(delta-eta) for M<0.8 GeV \rightarrow and ~independent of delta-eta for 1.2<M<1.5 GeV \rightarrow in addition, measurements are mostly systematics-limited ALICE 3 Study ALICE 3 Study at = 5.6 nb⁻¹ ···· vacuum o SF GeV/ 0-10% Pb-Pb, $\sqrt{s_{\rm NN}}$ = 5.02 TeV 0-10% Pb-Pb, Vs_m = 5.02 TeV - in med. SF w/ y-mixing (MeV) TOF+RICH ($4\sigma_{\tau}$ rej), B = 0.5 T Syst. Uncertainties: 0.5 TOF+RICH ($4\sigma_{=}$ rej), B = 0.5 T — in med. SF w/o χ-mixing – ALICE 3 Study $0.2 < p_{-} < 4 \text{ GeV}/c, |\eta_{-}| < 0.8$ $0.2 < p_{_{T_o}} < 4 \text{ GeV}/c, |\eta_o| < 0.8$ d²N/dm_{ee} sia. (5%) + bka. (0.02%) + L., = 5.6 nb⁻¹ 0-10% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ No bremsstrahlung included No bremsstrahlung included ≥ 10 Syst. Uncertainties: cc (15%) + LF (10%) 350 L_{int} = 5.6 nb⁻¹ $DCA_{an} \leq 1.2\sigma$ $DCA_{ee} \le 1.2\sigma$ sig. (5%) + bkg. (0.02%) 02 04 0.6 08 1.2 ₹10-Fit of the spectrum mee (GeV/c2) cc (15%) + LF (10%) 10 300 10 250 10-3 10 1.2 tai 200 Fit Range: $1.1 < m_{ee} < 1.8 \text{ GeV}/c^2$ 1.2 T_{et} (stat. unc. only) 150 0.5 15 2 2.5 3 0-4 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0.2 0.6 1.2 1.4 mee (GeV/c2) p_{Tee} (GeV/c) mee (GeV/c2)

R.Bailhache

Summary of impact of scoping options: v2

Measurement	Layout v2-2T	Layout v2-1T	
ALPs searches in $\gamma\gamma \rightarrow \gamma\gamma$	strongly limited ($m_a < 2 \text{ GeV}/c^2$, $1/\Lambda_a > 0.2 \text{ TeV}^{-1}$)		
$\chi_{\mathrm{c1,2}} ightarrow \mathrm{J}\psi \gamma$	measurement limited to $p_{\rm T} > 4 \ {\rm GeV}/c$		
	minor additional impact		
γ -jet correlations	limited improvement w.r.t. ALICE 2		
$\chi_{c1}(3872) \rightarrow J\psi \pi \pi$	not affected	minor impact	
$\Xi_{\rm cc}$ yield	not affected	minor impact	
Ξ_{cc} rapidity dependence	not affected	large impact	
B ⁺ yield and flow	not affected	moderate impact at low and high $p_{\rm T}$	
Λ_c and Λ_b flow	not affected	large impact at $2 < y < 4$	
$D^0 - \overline{D^0}$ vs. $\Delta \varphi$	not affected	minor impact	
D–D * vs. k^*	not affected	significant impact	
Dielectrons	not affected	can exploit full integrated luminosity	

 \rightarrow B = 2 T is the preferred field strength

 \rightarrow **B** = 1 T not the ideal option, but still enables a strong programme \rightarrow an intermediate value of magnetic field (e.g. 1.5T), can be considered as well

Summary of impact of scoping options: v3

Measurement	Layout v2-2T	Layout v2-1T	Layout v3-a	Layout v3-b
ALPs searches in $\gamma\gamma \rightarrow \gamma\gamma$	strongly limited ($m_a < 2 \text{ GeV}/c^2$, $1/\Lambda_a > 0.2 \text{ TeV}^{-1}$)			
$\chi_{c1,2} ightarrow J\psi\gamma$		measurement lim	ited to $p_{\rm T} > 4 \ {\rm GeV}/c$	
		minor additional impact		
γ -jet correlations	large	ge degradation without ECal reduction of jet acceptance from 7 to 4 η units		t acceptance from 7 to 4 η units
$\chi_{c1}(3872) \rightarrow J\psi \pi \pi$	not affected	minor impact		
Ξ_{cc} yield	not affected	minor impact		
Ξ_{cc} rapidity dependence	not affected	large impact	prevented	
\mathbf{B}^+ yield and flow	not affected	moderate impact at low and high $p_{\rm T}$		igh p _T
$\Lambda_{\rm c}$ flow	not affected	large impact at $3 < y < 4$	prevented at $ y > 2$	moderate additional impact at high
				$p_{\rm T} { m and} y > 0.8$
$\Lambda_{\rm b}$ flow	not affected	large impact at low and h	impact at low and high $p_{\rm T}$ moderate additional impact at high	
		$p_{\rm T} \text{ and } y > 0.8$		$p_{\rm T} { m and } y > 0.8$
$D^0 - \overline{D^0}$ vs. $\Delta \phi$	not affected	minor impact	significant additional impact	
$D-D^*$ vs. k^*	not affected	significant impact	minor additional impact	
Dielectrons	not affected	can exploit full integrated luminosity	prevented at $ y > 2$	prevented at intermediate masses at
				y > 0.8
Net-charge fluctuations	not affected		significant reduction of pseudorapidity separation	
		from $\Delta \eta = 8$ to $\Delta \eta = 4$		
Photoproduction, diffraction	not affected		significant reduction of acceptance from 8 to 5 η units	
π^0 and η background for real γ	not affected		large reduction of acceptance at low $p_{\rm T}$	

\rightarrow Clear limitation of physics reach \rightarrow But unique and strong programme remains

Impact of using present ALICE ("L3") magnet (B=0.5T)

• Studied to address question by LHCC (November)

- Large detector performance degradation (details in the next slides)
 - p_{T} resolution reaches 15-20% at forward rapidity and low p_{T}
 - Some charm-hadron mass peaks overlap at forward rapidity
 - PID separation becomes poor at forward rapidity and low p_{T}
 - Impact on physics benchmarks estimated (multi-charm, D-Dbar, D-D femto, HF baryon flow)
 - Impact less severe for layout v3, but still large degradation

- Electricity saving with SC magnet: -94%, i.e. ~0.22 TWh (~20 MCHF), with respect to current ALICE electricity consumption
 - About 10 MCHF with L3 solenoid only

Impact of magnetic field on p_{τ} and mass resolution

KK π invariant mass (GeV/c²)

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

 $0 < p_{T}(B^{0}) < 5 \text{ GeV}/c$

p

track $\sigma(p_)/p_1 = 1\%$ at $p_1 = 1$ GeV/c

5 5.1 5.2 5.3 5.4 5.5 5.6 5.

M(D⁻π⁺) (GeV/c²)

Impact of magnetic field on TOF & RICH PID

Poor p_T resolution at low p_T and at high rapidity causes loss of particle species separation, with degradation of many aspects of the programme

N.Nicassio

Version with 0.5 T and TPC?

- B = 0.5T field is not completely excluded for v3, but implies a strong further degradation, due to the poor p_{τ} resolution
- It is quite natural to ask what could be the physics reach of a version with L3 and the TPC (to keep good p_{T} resolution and eID up to high p_{T})
- To prepare for this question, we started to study what a "version 4", with TPC, could look like and perform
- Only for internal discussion for now

Layout version 4 draft

- MAPS-tracker: |eta|<1.5 (or 2)
 - Vertex Detector (Iris), shorter barrel |eta|<1.5-2, no disks
 - Middle Layers 7<R<20 cm (optionally ultralight)
 - Outer Tracker barrel (3 layers e.g. 25, 40, 45 cm) the TPC "vessel" starts at R~50 cm
 - All with 100 ns resolution \rightarrow can potentially run w/o TPC at 24 MHz pp
 - OT with 5 μm precision to improve standalone pT resolution?
- Inner Si-TOF at R~45 cm (with 20 ps resolution)
- TPC: Pb-Pb more than 50 kHz? pp more than 4 MHz?
 - Very large data throughput for pp 4 MHz \rightarrow strong impact on EPN processing
- TRD needed for TPC calibration?
- Current TOF would be important for PID up to few GeV
 - However, in case of hardware failures (FEE), supermodule extraction very difficult
- New and larger FIT for event characterisation and vetoing
- Can include FCT, FoCal
- To be considered: RICH for PID at 0.9<|eta|<1.5? MID around L3 magnet?

ALICE 3 PID

e/pi 35-500 MeV

K/pi <1.7 GeV eta=0 <1.2 GeV eta=1.5 Current TOF: < 2.5 GeV

p/K < 2.5 GeV eta = 0 < 2 GeV eta = 1.5 Current TOF: < 4 GeV

E H

ution

Pointing

ŕ

ALICE 3 v4: d₀ resolutions

- Test with IT as in ALICE 3 (0.5, 1.2, 2.5, 7, 10, 13, 16) + iTOF 20 cm + OT 25, 40, 45 cm
 - With $x/X_0 = 0.1\%$ for VD and 1% for ML/OT, and res 2.5 and 10 um, respectively
 - With B=0.5T, without TPC

\rightarrow ~same pointing resolution for v1-3 2T, v1-3 0.5T, and v4 0.5T

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

(%)

Resolution

Momentum

ALICE 3 v4: p_T resolutions

- Test with IT as in ALICE 3 (0.5, 1.2, 2.5, 7, 10, 13, 16) + iTOF 20 cm + OT 25, 40, 45 cm
 - With $x/X_0 = 0.1\%$ for VD and 0.5% for ML/OT, and res 2.5 and 5 um, respectively
 - With B=0.5T, without TPC

(%)

Resolution

Momentum

ALICE 3 v4: p_T resolutions

- Test with IT as in ALICE 3 (0.5, 1.2, 2.5, 7, 10, 13, 16) + iTOF 20 cm + OT 25, 40, 45 cm
 With x/X₀ = 0.1% for VD and 1% for ML/OT, and res 2.5 and **5 um**, respectively
 - With B=0.5T. with TPC

ALICE 3 v4: provisional performance summary

- Eta coverage severely reduced wrt to v1-3
 - Push to extend to |eta| < 1.5 with extended Si and partial TPC tracks?
- PID:
 - Inner TOF at R=45 cm with 20 ps resolution
 - eID to lower pT than TPC, may enable using 0.5T for ee programme
 - p/K separation up to 2.5 GeV, compared with 4 GeV for current TOF
 - Extension beyond |eta|>0.9 with long iTOF at R=45 cm or with RICH on TPC sides?
- Pointing resolution: same as ALICE 3 baseline
- p_{T} resolution:
 - \circ Si + TPC has same resolution as current ALICE
 - Si-only could be similar to v3 with 0.5T (acceptable for eta extension and in pp?)
- Interaction rate:
 - Pb-Pb: >50 kHz possible? but IROC occupancy ~30% at 50 kHz
 - Pb-Pb optimistic scenarios \rightarrow 200-300 kHz (see talk by LHC HI team)
 - $\circ~$ pp: TPC may reach ~4-6 MHz, but very heavy processing for async+skimming; alternative: Si-only for pp? But iTOF-only PID and poor p_T resolution

Physics goals		ALICE 3 v3-1T	ALICE 3 v4-TPC	Pro
Observable	Uniqueness			TOVISIONAL - H
Multi-charm baryons	Observation of multi-charm baryons in AA collisions	ok, mid-y	better than v3, but not i	in pp?
D-Dbar correlations	Angular de-correlation of soft charm	Stat. err. ∼12% q	uite close to v3-0.5T (but expect AS	width unc >20%); pp should be of
Beauty mesons and baryons	Precision of 0.01 on elliptic flow	ok, mid-y	mid-y ~similar to v3 with	h 1T
Quarkonia, ჯ₀₁(3872)	Measurement at low p_{T} and central rap.	ok low-p _T reach compromised by limited rate in pp and TPC acc		
X c1,2	Excited charmonia in AA collisions	ok	no gain wrt Run 4 (only l	lumi)
Di-leptons (T, flow, χ- symm)	Time-evolution of thermal radiation; chiral symm. at $\mu_{\rm B}=0$	ok ~ same as Lol	, but smaller eta range at low masses;	access to higher M (eID to higher pT
Net-baryon fluctuations	6 th order net-proton cumulants	1.8→4 eta units	$1.8 \rightarrow 3$ eta units with S	Si-tracker + iTOF
Photon-jet, full jets	High-precision low-p _⊤ , large-R jet modification	Acceptance incr. & H	F jets HF-jets	
Hadronic physics (femtoscopy, nuclei)	Charm-charm hadronic inter.; (hyper)nuclei with A = 5 and β	~ ok with 1-2T	D-D* femto: Pb-Pb should be ok; but pp Light and hyper nuclei: no gain wrt Run 4 c-deuteron search: ~same as Lol (p quite poor <mark>4 (only lumi)?</mark> (used y <1.44)
Searches in γγ in UPCs	ALPs m>0.1GeV and low coupling	limited	no gain wrt Run 4 (on	nly lumi)
Ultrasoft photons	Validity and limits of Low theorem	4 Andrea With F, CT	Ok, with FCT & no FIT-	-A 27

Summary

- ALICE 3 scoping scenarios documented in SD
 - \rightarrow v2 being considered as goal for financial/personnel discussions
 - \rightarrow v3 compromises on acceptance, but still strong programme
- Review by LHCC in next 3-4 months
 - Expect focus on schedule-risk mitigation
 - Request for option with L3 magnet may be reiterated
- Important to continue internal assessment of version with L3 and TPC
 - Clear limitations from acceptance and rate capabilities
 - Cost estimate to be also worked out

Thanks for your attention!

LS4 schedule

Dismantling of ALICE 2, installation of magnet and services, and of ALICE 3 fit in LS4

	\rightarrow	>	2033	2034	2035	
Begin date	End date	Dura	Dec Jan Feb Mar Apr May	Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug S	Sep Oct Nov Dec Jan Feb Mar Apr May Jun	
12/6/32	6/22/33	143	· · · · · · · · · · · · · · · · · · ·	Uninstall ALICE 2		
7/1/33	4/6/34	200		Install services		
7/1/33	8/18/33	35		Install absorber support structure		
8/19/33	10/6/33	35		Install absorber elements		
10/7/33	2/9/34	90	Install and commissioning superconducting magnet			
10/7/33	10/20/33	10		Magnet installation		
10/21/33	12/8/33	35		Magnet cool-down		
10/21/33	11/24/33	25		FCT dipole temporary installation		
12/9/33	1/5/34	20		Magnet commissioning		
1/6/34	1/19/34	10		🛄 Magnet field mapping (solenoid + FCT dipole)		
1/20/34	2/9/34	15		Magnet warm-up at 100K		
2/10/34	3/2/34	15		Install spaceframe		
3/3/34	5/11/34	50	2000 2000 2000	Install ECal detector	(-2 months for layout v2)	
3/3/34	4/27/34	40		Install MID detector		
5/12/34	6/29/34	35		nstall RICH	& TOF detectors	
6/30/34	8/24/34	40			Install central beampipe & vertex detector	
8/25/34	10/12/34	35			Install outer tracker	
10/13/34	11/30/34	35			install middle layers & disks	
12/1/34	12/14/34	10			Install outer tracker disks	
12/15/34	12/28/34	10			Install RICH & TOF endcaps	
12/29/34	1/25/35	20			Install FCT dipole and detecto	
1/26/35	3/22/35	40			Commissioning	

ECal: gamma-jet

- ECal can measure photons with x10 larger acceptance than ALICE 2 (EMCal)
- Photon can be correlated with charged-jets in |eta|<4 (exploiting ALICE 3 tracker acceptance)
- Uniqueness:
 - > wrt ATLAS/CMS: low p_⊤
 - p_{Tjet}>10 GeV in ALICE 3 (same ALICE), vs 50 in ATLAS/CMS
 - p_{Tgamma} >10-20 GeV in ALICE 3, vs 50 in ATLAS/CMS
 - wrt ALICE 2: x10 larger acceptance for the photon (EMCal vs ECal), x2 larger L_{int}, ch. jets in |eta|<3.6 vs |eta|<0.5
- Projections for recoil jet R_{AA} and I_{AA}

let (hadrons

OGP

Layout v2-2T: ECal descoping

Physics loss without ECal:

- Strong limitation in performance for BSM searches in $\gamma\gamma \rightarrow \gamma\gamma$
- $\chi_{c1,2}$ measurement starts at p_T 4-5 GeV/*c* instead of 1-2 GeV/*c*
- No possibility of full-jet and gamma-jet measurements

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

Layout v2-1T: multicharm baryon Ξ_{cc}

S.Trogolo, D.Chinellato

Significance at forward rapidity is reduced by

Layout v2-1T: Λ_c elliptic flow

- Measurement at central rapidity |y|<3 remains precise also with solenoid 1 T
- Measurement at forward rapidity 3

Layout v3: multicharm baryon E

- **Z**_{cc} yield measurement at fwd-y prevented
- Comparison with hadronisation model predictions has to rely only on mid-rapidity yield
 - Centrality dependence; possibly system-size dependence

Layout v3-b: heavy flavour

- Without hadron PID RICH in 0.8<|eta|<2:
 - \circ Low-p_T HF: no degradation; covered by TOF PID
 - High $p_T \Lambda_c$ and Λ_b : reduction of significance without proton ID from RICH

0.5T: impact of p_{T} resolution on TOF & RICH PID

- PID via TOF uses comparison of calculated track arrival time for different mass hypotheses with measured time-of-flight $t_{TOF,hypothesis} = \frac{L_{track}}{\beta c}$ with $\beta = \frac{p}{\sqrt{m^2 + p^2}}$ and $p = p_T \cosh(\eta)$
- PID via RICH uses comparison of calculated photon emission angle (ring radius) for different mass hypotheses with measured angle $\theta_{RICH,hypothesis} = \arccos\left(\frac{\sqrt{m^2 + p_T^2 \cosh^2(\eta)}}{n \cdot p_T \cdot \cosh \eta}\right)$ with n = aerogel refractive index
- p_T resolution contributes to uncertainty on calculated arrival time and emission angle

0.5T: impact of p_{τ} resolution on TOF & RICH PID

B=2T 3 sigma separation coverage: $p_{\rm T}$ vs η

B=1T 3 sigma separation coverage: p_{τ} vs η

B=0.5T 2.5 sigma separation coverage: p_{τ} vs η

v3-a performance degradation (examples)

- Second-order cumulants of net-baryons expected to have maximum deviation from Canonical Ensemble baseline at $\Delta \eta = 3-4$
 - Braun-Munzinger et al., arXiv:2312.15534.

v3-b performance degradation

- bRICH acceptance reduced to |eta|<0.8
- **Dielectrons** (studied during Lol preparation):
 - \rightarrow Significance scales with sqrt(delta-eta) for M<0.8 GeV
 - \rightarrow and ~independent of delta-eta for 1.2<M<1.5 GeV
 - However, studied only for low $p_{T,ee}$ ($p_{T,ee}$ >0) → to be checked at higher $p_{T,ee}$

 \rightarrow in addition, measurements are mostly systematics limited

• Net-protons:

 TOF coverage up to p_T=2 GeV at eta=2 sufficient for net-p analysis

v3-b performance degradation

- Heavy flavour :
 - hadron PID from TOF is enough for low-p_T HF region (the most critical)
 - possible effect on high $p_T \Lambda_c$ and Λ_b (to be assessed)

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

ALICE

v3: ALICE 3 uniqueness remains

Lowest material

Closest layer (5mm)

Fast readout (100kHz Pb-Pb, 24 MHz pp, no limitations for possible lighter nuclei runs)

Electrons, muons, hadrons, nuclei over largest p_T range at mid-y

>2x current η acceptance

Dielectrons: "T vs time", *o*-a, flow Multi-charm hadrons with strangeness tracking Beauty baryon flow **D-Dbar azimuthal** correlations D-D femtoscopy R=0.5 low-p_T jets $|\eta|$ <2 Excited charmonia, exotica Hyper-nuclei and search for charm-nuclei ALPs search at low masses

Large acceptance increase for UPCs

Possible impact of v3 on resources

- Removes the regions with maximum radiation load and occupancy (except for VD), relaxing the constraints for the OT/ML/TOF sensors and making less severe the challenge for RICH sensors
- Reduces by ~20% (tbc) the required resources for TOF and RICH, and reduces the mechanical design complexity (no disks, projective RICH geometry not needed in v3-b)
 - Further reduction can be achieved if the option of oTOF combined with bRICH is technically feasible (already in SD draft and under R&D)
- v3-b reduces by ~25% the RICH production FTEs
- Reduces the FTEs for OT disks, but 6 (or 8) disks remain a large project

Why |η|<2.5?

- p_T resolution quite constant in 1.3<η<2.5, then it starts to worsen
- <3% with B=1T</p>
- < <5% with L3 magnet
- However, 2.5 could be changed to 3, if physics gain is significant
 - would require an additional OT disk

0.5 T: $\boldsymbol{\Xi}_{cc}$ performance

- Central rapidity precision slightly better with 0.5T wrt 2T: 7% vs 10%
- Forward-y precision much worse (19% vs 9%) and measurement limited to $p_T>2$ GeV/c (~30% of the yield to be extrapolated)

0.5 T: D⁰-D* femtoscopy

140

120

100

80

60

Very diluted $C(k^*)$ with 0.5T:

- pp C(k*) > 1 by only 3σ
- Pb-Pb C(k*) not significantly different from 1 → inflection due to possible bound states cannot be resolved

D.Battistini

5th AUW Krakow | 8 Octiober 2024 | Andrea Dainese, Antonello Di Mauro

0.5 T: beauty baryon flow

P.Christakoglou

Layout version 4

Use this region 0.9<|eta|<1.5 with TPC short tracks+dE/dx?

OT L8 z+-1.3 m covers to |eta|=1.5

Reaching |eta|=2 requires outer layer z +-1.8 m (difficult?) and no absorber

ALICE 3 v4: Dielectrons and iTOF

0.2T:

- iTOF extends eID from 60 down to ~10 (?) MeV
- iTOF removes pi band crossing dEdx 0.5T:
 - iTOF extends eID from 150 down to ~20 MeV
- iTOF removes pi and K band crossing dEdx
- Dielectron programme at 0.5T? TBC
 - Also with iTOF at R=45cm?

ALICE 3 v4: iTOF at R=45cm and keep current TOF?

e/pi 35-500 MeV e/K 35-1.7 GeV

K/pi <1.7 GeV eta=0 <1.2 GeV eta=1.5 Current TOF: < 2.5 GeV p/K < 2.5 GeV eta = 0 < 2 GeV eta = 1.5 Current TOF: < 4 GeV

ALICE 3 v4: iTOF at R=45cm and keep current TOF?

e/pi 35-400 MeV

K/pi <1.3 GeV eta=0 <0.9 GeV eta=1.5 Current TOF: < 2.5 GeV p/K < 2.2 GeV eta = 0 < 1.5 GeV eta=1.5 Current TOF: < 4 GeV

ALICE 3 v4: iTOF at R=45cm and keep current TOF?

e/pi 35-350 MeV

K/pi <1.1 GeV eta=0 <0.8 GeV eta=1.5 Current TOF: < 2.5 GeV p/K < 1.9 GeV eta = 0 < 1.3 GeV eta=1.5 Current TOF: < 4 GeV

Multicharm baryons

- Acceptance:
 - reduction by a factor ~5 with |eta|<0.9 and R_{max}=45cm wrt |eta|<1.5 R_{max}=80
 - by a factor ~2 with |eta|<0.9 only for Xi daughters → reduction of significance by ~1.4? (sqrt(2))
 - Increase by a factor up to 3-4 at high p_T when not requiring 6 Si hits for Xi daughters, but only 2 (+TPC)
- p_T res: gain ~ x2 significance from p_T resolution with TPC 4x better than v3 with 0.5T
 gain: sqrt(2)^(N_masscuts)=sqrt(2)^2=2
- PID ok: with iTOF, TOF and TPC

Multicharm baryons $\Xi_{cc}^{++} \rightarrow \pi^+ \Xi_c^+ (\rightarrow \pi^+ \pi^+ \Xi^-)$

- Acceptance:
 - reduction by a factor ~5 with |eta|<0.9 and R_{max}=45cm wrt |eta|<1.5 R_{max}=80
 - by a factor ~2 with |eta|<0.9 only for Xi daughters → reduction of significance by ~1.4? (sqrt(2))
 - Increase by a factor up to 3-4 at high p_T when not requiring 6 Si hits for Xi daughters, but only 2 (+TPC)
- p_T res: gain ~ x2 significance from p_T resolution with TPC 4x better than v3 with 0.5T
 gain: sqrt(2)^(N_masscuts)=sqrt(2)^2=2
- PID ok: with iTOF, TOF and TPC
- Overall increase ~ x2 of significance at low pT < 5 GeV and ~x3 at high p_T
- pp reference difficult with lower int. rate; also, software triggering may be difficult

D. Chinellato, S. Trogolo

D-Dbar azimuthal correlations

- B=2T: decrease of precision on AS width from 3.5% (|eta|<4) to 10% (|eta|<2)
- B=0.5T: decrease of precision on AS width from 6% (|eta|<4) to 15% (|eta|<2)

B = 0.5 T

D-D* femtoscopy

- Pb-Pb measurement should be accessible with good precision
- pp measurement is necessary to get small-source baseline
 - \circ |eta|<0.9 with good p_T resolution (used 2T as proxy), but limited to 8 MHz (TBC)
 - OR |eta|<1.5 with poorer p_T resolution (used 0.5T as proxy), and 24 MHz
 - \rightarrow Both much worse than version 3 (even Si-only case has separation from C=1 barely ~3-4 sigma)

Charmonia: X(3872) and chi_c1,2

- Jpsi→ee in v4 has similar S/B to Jpsi→mumu in v1, but lower acceptance |eta|<0.9
- X(3872) → J/psi + 2pi:
 - Acceptance for the two pions can be similar to this plot (|eta|<1.5), but their pT res. is poorer
 - 18/fb (24 MHz) needed for measurement down to 1 GeV/c
 - Measurement limited to higher pT with 8 MHz (or less)
- Chi_c1,2 → J/psi + gamma: probably no gain compared to Run 4 (only L_{int})

Beauty meson and baryon flow

- Performance in |eta|<0.9 could be similar to ALICE 3 v₂ (|y|<1.44) with 1T
 - Better p_{τ} resolution than v2 2T, but smaller acceptance

Version 4 cost (first guess)

- ALICE 3 version 4: total ~50M (+-30% unc)
 - Replace ITS2 with small OT barrel and full IT barrel (~25M)
 - Inner TOF R=45cm? (~10M)
 - L3 consolidation (2M)
 - EPN and disk to run TPC at MHz in pp (10-20M)
 - Common items (15% ~ 8M)
 - Add FCT (~5M)

Operation cost (L3) ~11M