

ALICE 3 costs, personnel requirements and resources

5th ALICE Upgrade Week, Kraków, 8 October 2024

Andrea Dainese (INFN Padova), Antonello Di Mauro (CERN)

5th AUW Krakow | 8 October 2024 | Andrea Dainese, Antonello Di Mauro

- New schedule proposal after LS3 shift
- Present status of cost and resource estimates
- Status of national groups participation and required/available personnel profiles
- Impact of V4 on resources
- Plans towards TDRs

ALICE 3 timeline

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	20	034	
	Run 3			LS3				Ru	n 4			LS4		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1 Q2	Q3 Q4	
ALICE 3	Detector scoping, WGs kickoff	technolog	ion of gies, R&D, rototypes	1000 C	engineered otypes		Construc	tion		Contingency a precommission		Installatior commissic	10	

New proposed schedule after LS3 shift:

• depending on sub-system original schedule, distribute the 12 months mainly on the construction phase

	2023	2024	2025	202	26	2027		2028		2029	9		2030	()	2	031			2032	2		203	3		8	2034	,		2	035	
	Run 3				LS			LS3	53				Run 4				4					LS4									
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3	Q4 Q1	Q2 Q3	Q4 C	Q1 Q2 Q	3 Q4	Q1	Q2 Q3	Q4 (Q1 Q2	2 Q3	Q4	Q1 (Q2 Q	3 Q4	Q1	Q2	Q3 (Q4 Q	1 C	Q2 Q3	Q4	Q	1 Q2	Q3	Q4
ALICE 3	Detector scoping, WGs kickoff	R&D con	of technolog cept prototy	S (2)	R&D,	TDRs, er prototy		ed			8	Con	struc	tion								<u> </u>		anc			Inst con			n an onin	

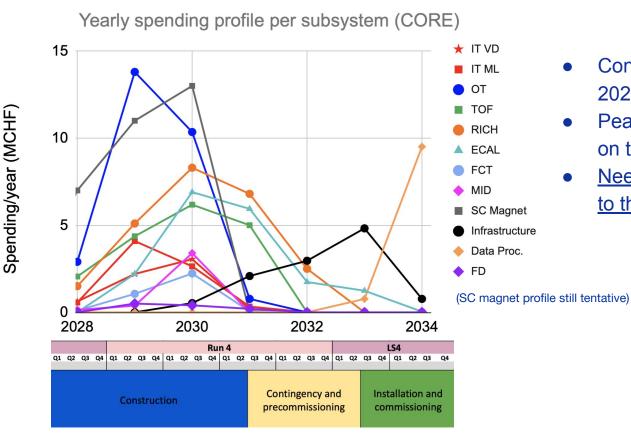
Compact schedules and milestones

	2023	2024	2025	2026	2027	20	28	2029		203	0	2	2031	2032	20	033	2	034
		Run 3			LS3							n 4				LS		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3	Q4	Q1 Q2	Q3 Q4	Q1 0	Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4 (Q1 Q2	Q3 Q4
ALICE 3	Detector scoping, WGs kickoff	Select technolog concept p	gies, R&D,		engineered types			Const	ruct	ion				ontingency a ecommissior				on and oning
Magnet	De	sign, R&D	CDR	TDR	EDR			Construct	tion			Cont	tingency	On-su commiss		Insta	II.	
п	Desigr	n, R&D	Prototy	ping TDR	Prototypin	EDR	Pre-p	prod. PRR		Producti	on	Inte	gration	Contingency		-surface	Ins	stallation
от	Desigr	n, R&D	Prototyping	Prototypi	ng 🛱 Pre-pr	od. PRR		Product	ion,	Detecto	r Asse	mbly		Contingency	Integr.	Commis	s. Ins	stallation
TOF	Desigr	n, R&D	Prototy	ping TDR	Prototyping	EDR	Pre-pro	duction	PRR	Produc	tion	Inte	gration	Contingency		-surface missioning	Ins	stallation
RICH	Desigr	n, R&D	Pr	ototyping	TDR	Prototy	ping	Pre-p	rod.	PRR	Pro	ductio	on	Contingency	Integr.	Commis	s. Ins	stallation
ECal		Desigr	n, R& D	Prototy	ping TDR	Pre	-produc	tion PRR		Р	roduc	tion		Contingency	Inte	egration	Ins	stallation
MID	Design & P	rototyping	Prototy	ping TDR	Prototypin	EDR	Pre-p	roduction	PRR		Prod	uction	Ŋ.	Contingency		-surface nissioning	Ins	stallation
FCT		Design	Prototy	ping TDR	Prototypin	EDR	Pre-p	prod. PRR		Producti	on	Inte	gration	Contingency		-surface missioning	Ins	stallation
FD			Design		Prototy	ping	TDR	Protot.	EDR	Pre-pro	d. PRR	Pro	duction	Contingency	Integr.	Commis	s. Ins	stallation

Subsystem schedules with main milestones (Technical Design Reports, Engineering Design Reviews, Production Readiness Reviews)

Updated compact schedule (proposal)

	2023	2024	2025	2026	2027	2028	2029	20	30	2031	2032	2033	203	34	2035
		Run 3				LS3					Run 4			LS4	
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4 Q	1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4 Q1	Q2 Q3 Q4
ALICE 3	Detector scoping, WGs kickoff		of technologie cept prototype		TDRs, engin prototypes			Constr	uction			ontingency a ecommission			tion and ssioning
Magnet	C	Design, R&D	CDR		TDR	EDR 4	Co	nstructi	_{on} +6	Sm	Contingency	On-sur commiss		Install.	
ІТ	De	sign, R&D	Prote	otyping	Proto	otypin@m	Pre-prod.	PRR		∝ ⊪ 6m	Integration	Contingency		surface hissioning	Installation
от	De	sign, R&D	Prototypi	Proto	typing 📙 Pr	re-prod.			Productio	"+9m	>	Contingency	Integr.	Commiss.	Installation
TOF		Design, R&D		Prototyping	Proto	otyping 🛱 Pr	re-production	PRR		_{cti} թՅm	Integration	Contingency		surface hissioning	Installation
RICH		Design, R&I)	Prototy	ping TR	Prototyping	Pre-prod.	PRR		Productio	_+12m	Contingency	Integr.	Commiss.	Installation
ECal		Desi	gn, R&D	Proto	yping D	Prototyping	Pre-prod.	PRR		Productio		Contingency	Inte	gration	Installation
MID	Design	& Prototyping	Protot	typing TDR	Prototypin	ng 📴 Pre-p	roduction PRR			Production	+12m	Contingency		surface hissioning	Installation
FCT		Design	Pro	ototypin	TDR Pro	ototyping	Pre-prod.	PRR	Produ	ctibi 6m	Integration	Contingency		surface hissioning	Installation
FD			Design		Prototyp	Ding DR	Protot.	EDR P	re-prod.	PRR	Productib 6m	Contingency	Integr.	Commiss.	Installation

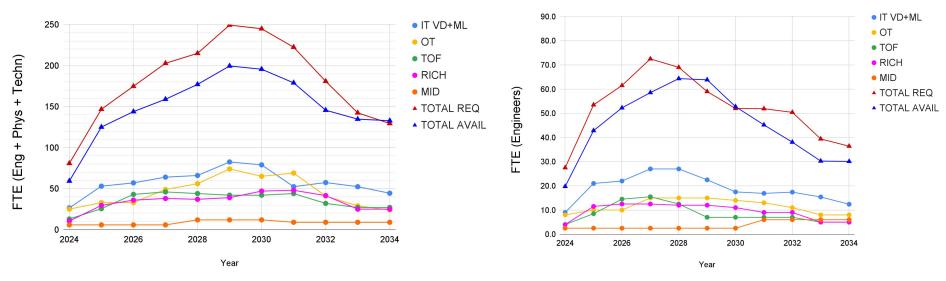

Impact on spending and resource profiles to be assessed to update SD tables

Scoping options detailed cost

System	Technology	V1	V2-2T no ECal, smaller R SCM and MID	V2-1T SCM B= 1 T	V3a no forward acceptance (ŋ < 2)
-		Cost (MCHF)	Cost (MCHF)	Cost (MCHF)	Cost (MCHF)
Inner Tracker	MAPS	13.7	13.7	13.7	11.7
Outer Tracker	MAPS	27.8	27.8	27.8	22.8
TOF	Monolithic LGADs	18.0	18.0	18.0	15.0
TOF	Hybrid LGADs	+13.4	+11.6	+11.6	+10.0
RICH	Aerogel, SiPMs	24.2	24.2	24.2	19.9
ECal	Pb-scintillator + PbWO4	18.1	0	0	0
MID	Iron absorber, scintillators, SiPMs	4.0	3.6	3.6	3.6
FD	scintillators, PMTs	1.1	1.1	1.1	1.1
Magnet system	Superconducting solenoid	31.0	24.7	19.6	16.6
Online computing	CPU and GPU nodes, disk buffer	10.3	10.3	10.3	10.3
TOTAL		148.2	123.4	118.3	101.0
Common items	Beampipe, infrastructure, services	+11.1	+11.1	+11.1	+11.1
	TC design and engineering	+10.9	+10.9	+10.9	+10.9
FCT	MAPS, dedicated dipole magnet	+3.45	+3.45	+3.45	+3.45

Spending profiles (old LS3 schedule)

- Construction spending starts in 2028, after TDR approvals
- Peaks in 2029-31 depending on the total construction time
- <u>Needs to be updated according</u>
 <u>to the new schedule</u>


Participation and interests of national groups

Experiment subsystems	National groups
Inner Tracker	CERN, China, Czech Republic, Italy, Nether-
	lands, Norway, Ukraine
Outer Tracker	Finland, France, Germany, Japan, South Ko-
	rea, Sweden, UK, US
Forward Conversion Tracker	Germany
TOF Detector	Brazil, China, Italy, India, Netherlands, South
	Africa
RICH Detector	Hungary, India, Italy, Malta, Mexico
Muon Identification Detector	Czech Republic, Hungary, India, Mexico, US
Data flow and online processing	CERN, Germany, Romania
Detector readout, links, clock distribution	CERN, Hungary, Slovakia, UK
Forward Detectors	Denmark, Mexico, Poland
Superconducting magnet design	Brazil, CERN, Italy

- Additional participations under discussion
 - \circ e.g.: Romania in TOF, Poland and US in RICH, \ldots
- Ongoing discussion with FAs to map contributions and finalize money matrix

Personnel resources: summary

- Shortage of projected personnel availability at level of 25%
 - mainly IT, RICH, TOF
- All systems based on silicon technologies, requiring integrated (and parallel) design of sensor, module, readout and control, powering, mechanics, cooling → <u>core engineering expertise needed in R&D and design phase (see right plot)</u>

Personnel resources: considerations

- Significant projected resources and increasing trend in the past months, but as of today some clear gap and specific issues
- Only very few "leading laboratories" for large-scale construction have been identified so far, and still with significant uncertainties (personnel availability, commitments with other projects)
- IT+OT:
 - Sensor design: critical phase next two years in parallel with ITS3 R&D
 - Margin to optimize IT resources: synergy with OT for mechanics, services, construction, DCS, installation
- TOF, RICH:
 - Low overall number of institutes, but growing amount of interested institutes
 - Still critical shortage of mechanical engineers and technicians, especially in R&D phase

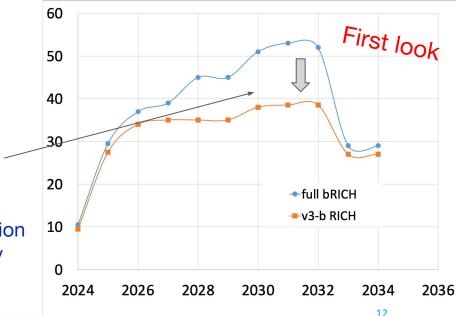
Possible impact of v3 on R&D and resources

• R&D

Removes the regions with maximum radiation load and occupancy (except for VD), relaxing the constraints for the ML/OT/TOF sensors and making less severe the challenge for RICH sensors

• Resources

→ Reduces the FTEs for OT disks, but 6 (or 8) disks remain a large project

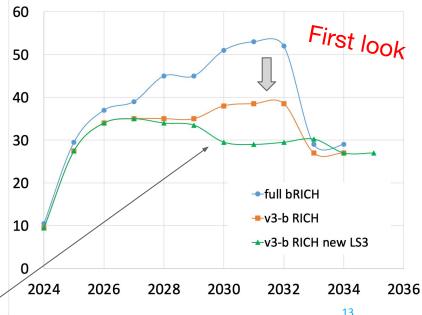

Possible impact of v3 on R&D and resources

• R&D

Removes the regions with maximum radiation load and occupancy (except for VD), relaxing the constraints for the ML/OT/TOF sensors and making less severe the challenge for RICH sensors

• Resources

- → Reduces the FTEs for OT disks, but 6 (or 8) disks remain a large project
- → Reduces by ~20% the required resources for TOF and RICH, and reduces the mechanical design complexity (no disks, projective RICH geometry not needed in v3-b)
 - Further reduction can be achieved if the option of oTOF combined with bRICH is technically feasible (already in SD and under R&D)


Possible impact of v3 on R&D and resources

• R&D

Removes the regions with maximum radiation load and occupancy (except for VD), relaxing the constraints for the ML/OT/TOF sensors and making less severe the challenge for RICH sensors

• Resources

- → Reduces the FTEs for OT disks, but 6 (or 8) disks remain a large project
- → Reduces by ~20% the required resources for TOF and RICH, and reduces the mechanical design complexity (no disks, projective RICH geometry not needed in v3-b)
 - Further reduction can be achieved if the option of oTOF combined with bRICH is technically feasible (already in SD and under R&D)
 - New LHC schedule can mitigate requirements

v3 and v4 comparison

			1	
	v3-a	v3-b	v4	comments
ІТ	No iris disks,	larger inner radiu	is of disks	Unchanged: R&D on IRIS, critical path sensor design
ОТ	6 (or 8) instea	ad of 12 disks	Only 3 layers, total area 10 m2 in barrel, no disks	 Available resources seem compatible with v2 and v3 Unchanged: R&D on cooling/mechanics, critical path sensor design (but less wrt v3)
TOF	No disks		Only iTOF but R= 20→45 cm	Still critical path CMOS LGAD design
RICH	No disks	Major change: 60% less surface	Endcaps out of TPC to increase η coverage?	 Possible solution for v4 to be studied Possibly critical path SiPM technology wrt DCR and radiation hardness
MID	No change	No change	Outside L3?	Possible solution for v4 to be studied
FARM	Small reducti		Probably ~ x2 increase for pp 5MHz	
5th AUW Kra	Row 8 October 2024	t Andrea Dainese, Antone	illo Di Mauro	14

Project planning

- Time to TDRs is limited \rightarrow setup more fine-grained effort
- Start transition of Subsystem-WGs to Projects
 → Substructure with Work Packages and people in charge
- Define schedules with milestones towards the TDRs
 O Put in place progress-tracking
 O Major checkpoint in the second part of next year

Planning towards TDRs

Generic task \rightarrow approx mapping to TDR chapters	1st Milestone - Q1 2025?	2nd Milestone - Q3 2025?	3rd Milestone - Q1 2026?
 Finalisation of specifications spatial and time resolutions rate capability max. occupancy and granularity radiation load simulations of performance and of readout chain 	First version of specifications tables	Final specifications and simulations Assessment of maximum radiation tolerance and input to pp rate target	
 Sensor design / selection options of technology choice of technology or missing steps 	Comparison of available options (e.g. for TOF, MID); roadmap for new developments (e.g. for trackers)		
Sensor prototype characterization rad. hardness noise timing, 		Completion of characterization of possible sensor options	Sensor selection (example, depending on subsystem)

Planning towards TDRs

Generic task \rightarrow approx mapping to TDR chapters	1st Milestone - Q1 2025?	2nd Milestone - Q3 2025?	3rd Milestone - Q1 2026?
Module interconnection technology flex/PCB design assembly procedure data links integration 	Preliminary conceptual design of module, including interconnection	First mockups for assembly tests with dummy or provisional sensors, including interconnection	Flex/PCB design, depending on sensor status
Module prototype characterization • functional • mechanical/thermal • irradiation		Design of test setups for modules	First results on characterisation
FEE ASIC design (technology, main functionalities, power consumption)	First version of specifications	Final specifications	
FEE ASIC characterization (rad. tol., time resolution)			First characterisation
Readout and off-detector electronics		First version of specifications	Final specifications

Planning towards TDRs

Generic task \rightarrow approx mapping to TDR chapters	1st Milestone - Q1 2025?	2nd Milestone - Q3 2025?	3rd Milestone - Q1 2026?
 Mechanics for module, barrel, disc staves or supermodules design and assembly procedure barrel/disc support and assembly procedure service carriers integration 	Preliminary conceptual design of staves or supermodules Preliminary conceptual design of global mechanics	Characterisation of mockups for staves and support structures First version of detailed design	Service carriers Integration procedure
 Powering power estimates power units and power distribution 		Finalise power estimates	Preliminary design of power system
Cooling specifications, simulations cooling plant and distribution options and prototype tests 	First specifications, definition of options, first simulations	First version of detailed design	Prototype tests and selection of option for TDR
Detector safety and detector control systems			Preliminary conceptual design
Resources and planning after TDR (cost estimates and profiles, schedule and milestones, organisation and contributions, risk analysis)			Prepare material

• Excellent work by WG coordinators

- general schedules
- detailed cost estimates and spending profiles
- required and available personnel profiles
- Impact of new LHC schedule for LS3, Run 4 and LS4
 - Need to update project schedules and resource profiles for the Scoping Document
- Transition to WP structures and milestones towards TDRs
 - WP definition well advanced in all projects, should start in ~ 4-6 weeks
 - Finalization of milestones on same timescale to plan progress tracking from 2025