

## ALICE 3 Summary and Outlook

5th ALICE Upgrade Week, Kraków, 11 October 2024

Andrea Dainese (INFN Padova), Antonello Di Mauro (CERN)



### Highlights from subsystems parallel sessions

# (much more in the plenary and parallel session talks!)



## SC magnet

- News on the conductor
- Baseline → CERN R&D program: tender early 2025 to set up a development line for coextrusion and coldwork.
- Since availability of the conductor remains an issue, we decided to design a magnet starting from an available conductor, rather than following the conventional process, i.e. magnet design  $\rightarrow$  conductor design.

+ Concrete interest from Brazil and Pakistan to contribute to magnet (and absorber)

- The Chinese company Wuxi-Toly provided specs and a 10m sa Experimental Muon Source (EMuS) magnet:
  - A bit smaller than our nominal design: 4.7 x 15 mm<sup>2</sup>.
  - Coextruded with pure AI.
- We asked M. Mentink (CERN EP) to studiy a cold-mass concert



Al-coextruded cable



Preliminary investigation of using this conductor "as-is" for the ALICE 3

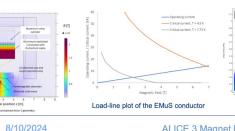
Cold-mass concept based on EMuS conductor

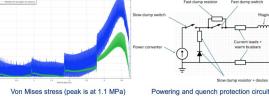
superconducting magnet (v2-2T):

- Very stable conductor with large operating margin.
- The shear stress at the interface between the conductor to the support cylinder is modest, with a peak of 1.1 MPa.
- Quench protection: with an energy extraction resistance of 150 m $\Omega$ , the adiabatic hotspot temperature may be kept below 100 K, provided quench detection and validation occurs within 155
- Conclusions: the conductor might be used as-is, even if it would preferable if the amount of aluminum were increased, while reducing the fraction of Nb-Ti. Quench protection would be more straightforward if the conductor cross-sectional area were larger (i.e. more aluminum).

Property 178 Total length of the absorber [m] ength of the thicker part of the absorber in the middle [m kness of the absorber in the middle [m] is of the absorber at the edges [m]

ALICE


| Property                                                                                                                       | Value |
|--------------------------------------------------------------------------------------------------------------------------------|-------|
| Operating current [A]                                                                                                          | 4590  |
| Stored magnetic energy [MJ]                                                                                                    | 74    |
| Inductance [H]                                                                                                                 | 7.0   |
| Peak magnetic field on the conductor at operating current [T]                                                                  | 2.24  |
| Aluminum-alloy cylinder thickness [mm]                                                                                         | 35    |
| Number of layers                                                                                                               | 2     |
| Number of windings per layer                                                                                                   | 1312  |
| Total number of windings                                                                                                       | 2624  |
| Total conductor length, including in-coil joints but not external busbars,<br>extra lengths for quality control, etcetera [km] | 24.2  |
| Cold mass length [m]                                                                                                           | 7.44  |
| Cold mass weight, not including cold mass suspension, cooling lines, etc.                                                      | 14.5  |


Current leads

Slow dump resistor

8/10/2024

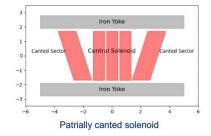
ALICE 3 Magnet Pro



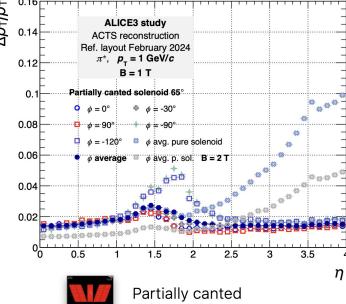


5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello

ALICE 3 Magnet Project - A.Tauro


### ALICE

## SC magnet




- Goal: improve the momentum resolution at rapidity values 2<η<4 (was investigated also in the Lol with dipoles).
- Field maps (1T magnet) produced for two different geometries: canted and partially canted and different winding angles.
- Field maps → pT resolution plots (see Pavel's talk).
- Results:
  - © As expected, improved resolution in forward region  $\eta$ >2.2.
  - B Large phi-asymmetry of pT resolution.
- These implementations present <u>added complexity and cost</u> → probably more efficient to proceed directly with the 2T option?

Canted solenoid is interesting, but 2T standard solenoid is a safer option, and probably similar cost







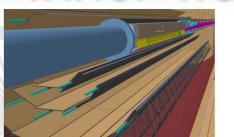
pT resolution → See Pavel's talk

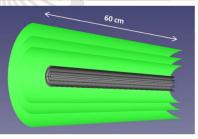
#### ALICE 3 Magnet Project - A.Tauro

5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro

8/10/2024

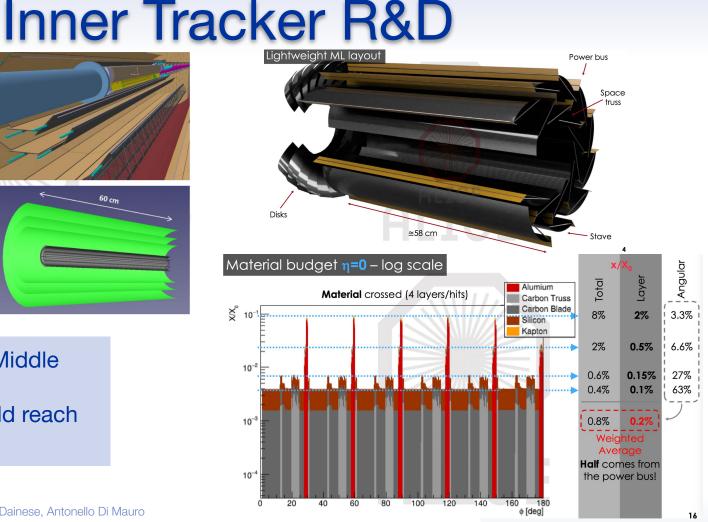



#### Ongoing studies


Lol concept

- Traditional stave-based layout
- Same sensor as larger radius layers
- Mechanics, liquid cooling
- 1% X<sub>0</sub> for normal incidence
- Length = 124 cm
- Serial powering
- Coverage (L4):  $|\eta| < 2.9$

Possible optimized layout for L3-L4


- Flexible sensors with minimal supports
- Stitched sensor
- Added supports and I/O structures to cover the length
- 0.1% X<sub>0</sub> for normal incidence
- Length = **60 cm**
- Coverage (L4):  $|\eta| < 2.4$





Different options for Middle Layers under study; Ultralight version could reach x/X0 ~ 0.1-0.2%

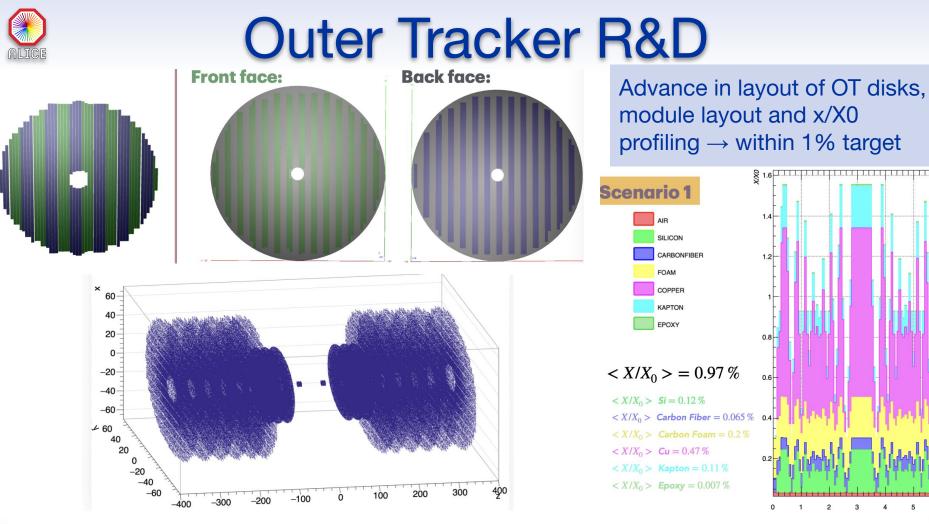
5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro





SENSORS

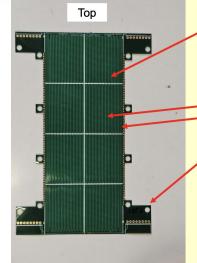
Layers and Disk


### Inner Tracker R&D

#### SECONDARY VACUUM

in the petals of the IRIS tracker and in the services volume. Avoids contamination of primary vacuum from detector outgassing

#### Outgassing tests to qualify material for IRIS vacuum req.


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                              | Samples                              | Initial<br>Mass [mg] | Mass<br>immediately<br>after vacuum<br>treatment [mg] | Mass after vacuum<br>treatment [mg] | TML [%]<br>[Mass loss] | TML [%]<br>[Regain mass] | Remarks                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------|-------------------------------------------------------|-------------------------------------|------------------------|--------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRIMARY VACUUM                  | SERVICES SIDE                                                | Al <sub>2</sub> O <sub>3</sub>       | 4738.5               | 6 4738.4                                              | 4738.5                              | 0.002                  | 0.002                    | Vacuum Compatible             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In the beampipe                 | All services from one side<br>Power, Data, Cooling, Rotation | Al <sub>2</sub> O <sub>3</sub> _Irrd | 4711.4               | 4711.4                                                | 4711.4                              | 0                      | 0                        | Vacuum Compatible             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le transportation under vacuum: |                                                              | AIN                                  | 3907.8               | 3907.9                                                | 3907.8                              | -0.003                 | -0.003                   | Vacuum Compatible             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                              | AIN_Irrd                             | 3912.7               | 3912.9                                                | 3912.9                              | -0.005                 | 0                        | Vacuum Compatible             |
| A Construction of the second s |                                 | 5.8 E-10 Torr = 7.7 E-10 mbar                                | C_All_Comp_LD                        | 974.4                | 974.1                                                 | 973.9                               | 0.03                   | -0.02                    | Vacuum Compatible             |
| - 1 - 24<br>- 24 - 24 - 24 - 24 - 24 - 24 - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                              | C_All_Comp_HD                        | 2670.5               | 2668.9                                                | 2669.1                              | 0.06                   | 0.01                     | Vacuum Compatible             |
| 2 (2) (2) (2) (2) (2) (2) (2) (2) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                                              | AlSi                                 | 7456.9               | 7456.9                                                | 7456.9                              | 0                      | 0                        | Vacuum Compatible             |
| <ul> <li>Benerica to at a<br/></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 42 2                          |                                                              | C_Substrate                          | 483.3                | 482.5                                                 | 483.0                               | 0.17                   | 0.10                     | Vacuum Compatible             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                              | Opt_Fiber                            | 976.1                | . 973.4                                               | 974.5                               | 0.28                   | 0.11                     | Shows Outgassing, but TML <1% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                              | C_ERG                                | 225.1                | 200.9                                                 | 223.8                               | <mark>12.046</mark>    | <mark>11.398</mark>      | Shows Outgassing & TML>1%     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | UHV setup @INFN Bari                                         |                                      |                      |                                                       |                                     |                        |                          |                               |



5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro

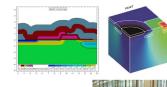


### **Outer Tracker R&D**



- Expected chip positions
- Bonding pads, 1 row on each side
- Heating meander (one per sensor with 5 x higher density at the periphery)
- Connection flaps for
   Heating and temperature measurement. (just for testing)
- Handling flaps
- 150 μm 2D CF plate glued to the FPC.

Module design started; FPC connection under study


Exploring collaboration with semiconductor lab of Max Planck Society in Munich

The Semiconductor Lab of the Max Planck Society – MPG HLL



- 1000 m<sup>2</sup> of clean room area
- 330 m<sup>2</sup> of ISO 3 area
- Full 6 inch silicon process line

#### Process and Device simulation, 2D and 3D





State-of-the-art layout tools

Central facility of the Max Planck Society

with ~40 employees

scientists, engineers, technicians, and students





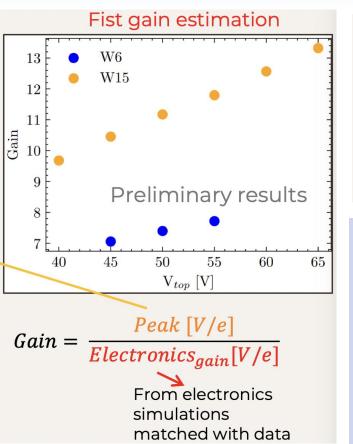
Interconnection, assembly
 system/camera design and test





- 1500 m<sup>2</sup> of cleanroom area
   600 m<sup>2</sup> of ISO 3 & ISO 4 area
  - 8 inch silicon process line








System test and evaluation



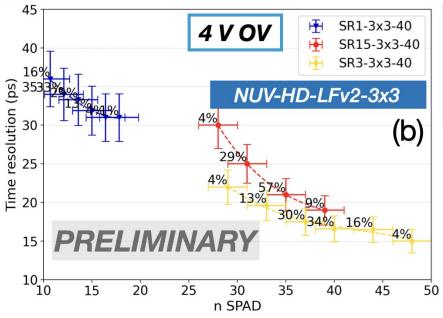
### TOF R&D



- → Prototype for timing application in 110nm technology design in the ARCADIA project MadPix
- → Test beam characterization of devices with low gain ≈ 2.5
  - → Time resolution ≈ **130ps** (Electronics + Sensor) but **high substrate current**
- $\rightarrow$  Performed Focused Ion Beam (**FIB**) on multiple samples
  - Substrate current: 2 orders of magnitude lower
- → Laboratory characterization of structure with improved gain
  Gain of the sensor between 5 and 13

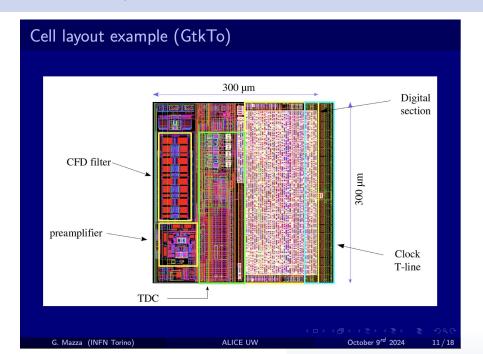
#### What's next?

Characterization of MadPix with improved gain in the test beam of October 2024


New production of CMOS LGAD prototype sensor shows large gain (up to 15), compatible with simulations.

Will be tested in beam in the next days, expect time resol ~60ps

Important step towards target time resol  ${\sim}20\text{ps}$  with version thinned to 25-30 um




### TOF R&D

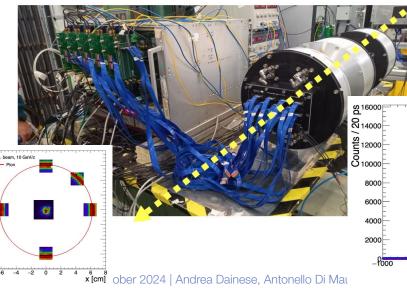


Beam test of new FBK 3x3 mm2 SiPM Next: include FEE with Liroc and picoTDC

Preliminary specifications of the CMOS-LGAD FEE

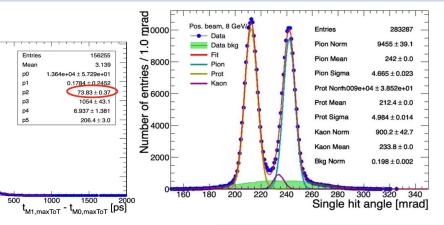


5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro




### **RICH R&D**

0



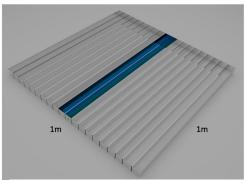





- New Radioroc FE board equipped with picoTDC
- 8x8 matrix of 2x2 mm2 HPK SiPM S13361-2050
- CO2 as radiator gas to extend e-ID range
- monolithic 2-layer aerogel tile for focusing
- $\rightarrow$  testbeam completed on 9/10, data analysis started
- $\rightarrow$  measured expected Cherenkov angle resolution with nominal pixel size

 $\rightarrow$  preliminary time resolution for MIP detection  $\sim 50$  ps (w/o time walk correction)






## MID R&D

N.N. /.

node / Field Wire plan

Conceptual design for the complete module



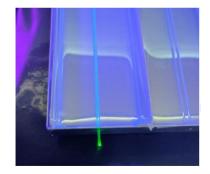
Detectors for the test beam

- 8mm segmentation in both directions (in MID, we anticipate 12mm segmentation)
- Field wires (FW, parallel with anode wires)
- Pick-up strips (PW, wires) perpendicularly

(That is, one chamber provides two directions, 64+64 channels)

5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro

Progress towards conceptual design


Baseline for scintillator chosen (FNAL), but R&D actively ongoing in Mexico

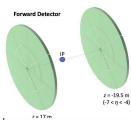
Studies of alternative options for sensors in Hungary and India (MWPCs, RPCs, alternative SiPMs)

Testbeam (with absorber) ongoing!

Prototype module for the test beam:50 cm x 50 cm x 1 cm








### FD R&D

#### Forward Detector Design

#### FV0 like design currently considered

- Two segmented scintillator disks
- Light collections with clear fibers
- Standard Hamamatsu Fine-mesh PMTs





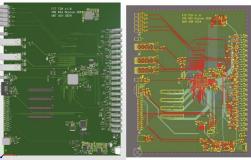
Defined baseline layout (FV0-like design: Eljen scintillators and fine-mesh PMT)

#### **R&D** plans:

- different scintillators (PEN/PET)
- alternative PD: SiPM or LAPPD

Started conceptual design of FEE (as FIT evolution)

#### Main activities at AGH

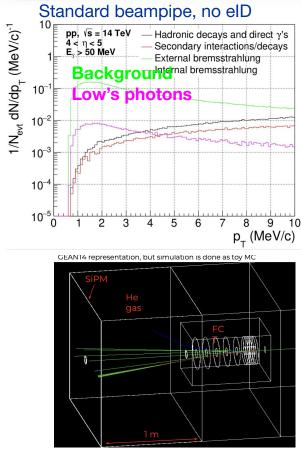

- Enhancement of analog front-end FIT readout electronics:
  - goal to achieve measurments with:
    - 14 bit charge resolution,
    - system RMS jitter < 20 ps.
  - the pre-amplifier improvement for better signal dynamics
  - new architecture of the charge integrator to increase precision,
  - launch of the ASIC project to increase overall AFE performance.
- High frequency direct sampling of PMT signal



### FIT PM/TCM upgrade and roadmap

5th ALICE UPGRADE WEEK in Kraków

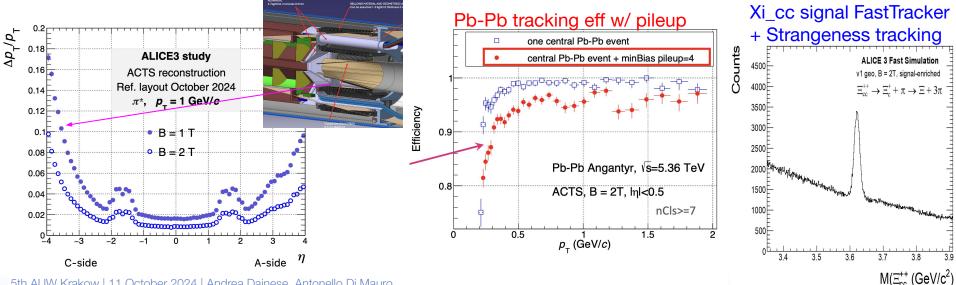
G.Kasprowicz, Warsaw University of Technology






### **FCT studies**

elD is necessary: a RICH behind FCT under study; quite large volume and SiPM area; area and DCR can be reduced with dual RICH layout (mirrors) - large-scale project


H3050CS H3075CS L = 1.81 mL = 2.45 m $N_{Hits th.} = 2$  $N_{Hits th.} = 3$ (MeV/c)<sup>-1</sup>  $1/N_{evt} dN/dp_T (MeV/c)^{-1}$ Hadronic decays and direct γ's Secondary interactions/decays External bremsstrahlung Internal bremsstrahlung 10 ALICE 3 study Hadronic decays and direct  $\gamma$ 's ALICE 3 study pp, √s = 14 TeV Secondary interactions/decays External bremsstrahlung pp, vs = 14 TeV FCT: 4 < η < 5 FCT: 4 < n < 5 E > 50 MeV  $10^{-2}$ 50 MeV Internal bremsstrahlung Other sources CD e<sup>±</sup> veto Other sources CD e<sup>±</sup> veto dN/dp\_  $10^{-3}$  $10^{-3}$ 1/N<sub>evt</sub> 10-10 10-5  $10^{-5}$ 10 10 5 6 9 2 10 p\_ (MeV/c) p\_ (MeV/c)



5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di N

### 

- Crucial to have short-loop feedback between engineering work and simulation
- Some clear examples:
  - Impact of IRIS services material on forward tracking  $\bigcirc$
  - Impact TOF time resolution on physics performance 0
  - Impact of IT/OT sensor specs (space and time res.) on tracking and physics 0
- Development of ACTS and of FastTracker in OTF important to enable this feedback



5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro



### **ALICE 3 timeline**

|   | 2   | 202 | 24  |      |      | 20                | 25  |    | 2026 2027 |     |    |              |    |    | 2028 |     |    |   | 2    | 029 |       | 2030 |      |     |      | 2031 |    |    | 2032 |    |    | 2033 |    |    |    | 3 2034 |            |    |   |     |     |               |     |    |      |
|---|-----|-----|-----|------|------|-------------------|-----|----|-----------|-----|----|--------------|----|----|------|-----|----|---|------|-----|-------|------|------|-----|------|------|----|----|------|----|----|------|----|----|----|--------|------------|----|---|-----|-----|---------------|-----|----|------|
|   | R   | Run | 13  |      |      |                   |     |    |           | LS3 |    |              |    |    |      |     |    |   |      |     | Run 4 |      |      |     |      |      |    |    |      |    |    |      |    |    |    |        |            |    |   | LS4 |     |               |     |    |      |
| C | 1 0 | 22  | Q3  | Q4   | Q1   | Q2                | Q3  | Q4 | Q1        | Q2  | Q3 | Q4           | Q1 | Q2 | Q3   | Q4  | Q1 | Q | 2 Q3 | Q4  | 1 Q1  | Q2   | Q3   | Q4  | Q1   | Q2   | Q3 | Q4 | Q1   | Q2 | Q3 | Q4   | Q1 | Q2 | Q3 | Q4     | Q1         | Q2 | Q | Q4  | + C | 21 0          | 2 0 | 23 | Q4   |
|   |     | ech | nnc | olog | gies | of<br>, R&<br>oty | &D, |    | R         | &D, |    | )Rs,<br>roto |    |    |      | red |    |   |      |     |       | Cc   | nsti | ruc | tion |      |    |    |      |    |    |      |    |    |    | -      | nd<br>iing |    |   |     |     | llati<br>nis: |     |    | 22.5 |

#### New proposed schedule after LS3 shift:

• depending on sub-system original schedule, distribute the 12 months between the R&D/TDR phase and the construction

| 2024 2025                                  | 2      | 026     | 20    | 027               |      | 2028  | 3    |    | 2029  |    |       | 20   | 30    |     |    | 2031 |     |      | 20 | )32 |    |    | 203  | 3            |     | 2034 |     |              |   | 2035 |      |      |
|--------------------------------------------|--------|---------|-------|-------------------|------|-------|------|----|-------|----|-------|------|-------|-----|----|------|-----|------|----|-----|----|----|------|--------------|-----|------|-----|--------------|---|------|------|------|
| Run 3                                      |        |         |       |                   |      | S3    |      |    |       |    | Run 4 |      |       |     |    |      |     |      |    |     |    |    |      |              | LS  | 54   | 4   |              |   |      |      |      |
| Q1 Q2 Q3 Q4 Q1 Q2 Q3                       | 4 Q1 Q | 2 Q3 Q4 | Q1 Q2 | Q3 Q4             | 1 Q1 | Q2 Q3 | 3 Q4 | Q1 | Q2 Q3 | Q4 | Q1    | Q2   | Q3    | Q4  | Q1 | Q2 Q | 3 Q | 4 Q1 | Q2 | Q3  | Q4 | Q1 | Q2 ( | Q3 Q         | 4 ( | Q1 Q | 2 Q | 3 Q4         | Q | L Q2 | 2 Q3 | Q4   |
| Selection of technol<br>R&D, concept proto |        | R&D,    |       | , engin<br>otypes |      | ed    |      |    |       |    | Соі   | nstr | ructi | ion |    |      |     |      |    |     |    |    | -    | ncy<br>issic |     |      |     | Insta<br>com |   |      |      | 1000 |



### Updated schedule and milestones

|         | 2023                                | 2024          | 2025                             | 2026                                      | 2027                    | 2028                | 2029          | 203       | 30 2031                   | 2032                | 2033                          | 2034                        | 2035                   |
|---------|-------------------------------------|---------------|----------------------------------|-------------------------------------------|-------------------------|---------------------|---------------|-----------|---------------------------|---------------------|-------------------------------|-----------------------------|------------------------|
|         |                                     | Run 3         |                                  |                                           |                         | LS3                 |               |           |                           | Run 4               |                               | LS4                         |                        |
|         | Q1 Q2 Q3 Q4                         | Q1 Q2 Q3 Q4   | Q1 Q2 Q3 Q4 Q                    | 1 Q2 Q3 Q4                                | Q1 Q2 Q3 Q              | 4 Q1 Q2 Q3 Q4       | Q1 Q2 Q3 Q4   | Q1 Q2     | Q3 Q4 Q1 Q2 Q3            | Q4 Q1 Q2 Q3 Q4      | Q1 Q2 Q3 Q4                   | Q1 Q2 Q3 Q4 Q               | 1 Q2 Q3 Q4             |
| ALICE 3 | Detector<br>scoping,<br>WGs kickoff | R&D con       | of technologie<br>cept prototype | 1. C. | TDRs, engi<br>prototype |                     |               | Constru   | uction                    |                     | Contingency a<br>recommission |                             | ation and<br>issioning |
| Magnet  | C                                   | Design, R&D   | CDR                              |                                           | TDR                     | EDR                 | Cor           | nstructio | <sub>on</sub> +6m         | Contingency         | On-sur<br>commiss             | Install                     |                        |
| IT      | De                                  | sign, R&D     | Prot                             | otyping                                   | Prot                    | oty <b>phroam</b> 🗒 | Pre-prod.     | PRR       | Product <del>iþ</del> i6N |                     | Contingency                   | On-surface<br>commissioning | Installation           |
| ОТ      | De                                  | sign, R&D     | Prototypi                        | Proto                                     | typing 🛱 P              | re-prod.            |               | Р         | Production+9n             | <u>ן</u>            | Contingency                   | Integr. Commiss             | Installation           |
| TOF     |                                     | Design, R&D   |                                  | Prototypn                                 | Prot                    | otyping 📴 Pr        | e-production  | PRR       | Productier 61             |                     | Contingency                   | On-surface commissioning    | Installation           |
| RICH    |                                     | Design, R&I   |                                  | Prototy                                   | ping TDR                | Prototyping         | Pre-prod.     | PRR       | Product                   | <sub>ion</sub> +12m | Contingency                   | Integr. Commiss             | Installation           |
| ECal    |                                     | Desi          | gn, R&D                          | Proto                                     | typing                  | Prototyping         | Pre-prod.     | PRR       | Product                   |                     | Contingency                   | Integration                 | Installation           |
| MID     | Design                              | & Prototyping | Protot                           | typing TDR                                | Prototypi               | ng 🦉 Pre-p          | roduction PRR |           | Productio                 |                     | Contingency                   | On-surface<br>commissioning | Installation           |
| FCT     |                                     | Design        | Pro                              | ototypin                                  | TDR Pro                 | ototyping           | Pre-prod.     | PRR       | Production                | Integration         | Contingency                   | On-surface commissioning    | Installation           |
| FD      |                                     |               | Design                           |                                           | Prototy                 | ping ID             | Protot.       | EDR Pr    | re-prod.                  | Productib 6m        | Contingency                   | Integr. Commiss             | Installation           |

#### Impact on spending and resource profiles to be assessed to update SD tables



## **Project planning**

- Time to TDRs is limited  $\rightarrow$  setup more fine-grained effort
- Start transition of Subsystem-WGs to Projects
  - → Substructure with Work Packages and people in charge
  - $\rightarrow$  Start process of identifying Project Leaders



### Work Package proposals: IT

- · Chip design (needs two branches, and two WP leaders dedicated to VD/ML)
  - Common items:
    - Common blocks
    - Serial powering
    - Front-end optimisation
  - VD-ML optimisation:
    - · Development of a small pitch, high radiation tolerance chip
    - Adaptation and configuration for ML
    - Two independent reticle assemblies (VD and ML)
    - Target: submission end of 2025/beginning of 2026
- Characterisation (shared)
  - Characterisation of chips and modules in vooring
  - Testing of existing prototypes at high radi
  - Characterisation of bent chips
- Sensor integration (VD focussed)
  - Lightweight module ('MAPS foil')
  - 2.5d / 3d integration of powering and data
  - ML integration (for lightweight version)

- ML module/stave design (→ will evolve into production)
- Mechanics and integration (two WP leaders dedicated to VD/ML synergy with OT)
  - VD: retractable in-vacuum mechanics
  - · ML: bent or planar module and staves
  - · Global integration and interfaces to beam pipe and iTOF/OT
  - Cooling architectures
- Readout and power supply services (two WP leaders dedicated to VD and ML)
  - Vacuum integration
  - Radiation hardness
  - Serial powering
- Physics performance and response simulation (common to OT)
- Detector Control System (not starting yet)
- Calibration and data quality assurance (VD needs to start first)
  - Alignment procedures for the IRIS



### Work Package proposals: OT WP2 - Sensor design

- **WP1** Simulations and performances
- **WP2** Sensor design
- WP3 Sensor post-processing
- WP4 Sensor qualification
- WP5 Module design and production
- WP6 Mechanics and cooling
- WP7 Readout, Slow Control and Powering

Integration, installation and transverse perspectives (WP8)

Cros

- Sensor design:
  - Analog part
  - Matrix architecture
  - Numeric part
  - Periphery
  - Powering distribution
- · Interface to characterization and mass test
- Interface to DRD3.1 project
- Interface to VD sensor

#### WP5 - Module design and production

1 Convenor Barrel Convenor Discs

- Module concept:
  - Sensor interconnection
  - FPC
  - · "local" readout, cooling, mechanics, slow control
- · Industrialization of module production
  - Sensor logistics
  - · FPC production and gualification
- · Test protocol of modules
  - Test for industry after production
  - · Test for institutional sites before stave production

5th AUW Krakow | 11 October 2024 | Andrea Dainese, Antonello Di Mauro

### ALICE

### Work Package proposals: TOF

#### **ALICE 3 TOF: proposal for Work Packages**

| Work Package                                         | Description                                                                                                                   |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| WP1: Detector performance simulation, reconstruction | Detector layout optimization via MC simulations                                                                               |
| WP2: Sensor simulation                               | Sensor-grade simulation for sensor design (TCAD and MC simulation): optimization of timing resolution                         |
| WP3: Front-end design                                | <ul> <li>Design of CMOS-LGAD ASIC with integrated electronics</li> <li>Design of FE for standard LGAD</li> </ul>              |
| WP4: Sensors characterization and qualification      | Sensors characterization in laboratory and with beams                                                                         |
| WP5: Module design, mechanics and cooling            | <ul> <li>Module design</li> <li>Mechanics for module, staves and disks</li> <li>Cooling plant studies</li> </ul>              |
| WP6: Readout, power and services                     | <ul> <li>Off-sensor readout (lpGBT, VTRx+ up to CRUs)</li> <li>Power units and services</li> </ul>                            |
| WP7: Integration                                     | <ul> <li>Service integration: cooling, electrical and optical services</li> <li>Detector control and safety system</li> </ul> |

## Work Package proposals: RICH

| Work package                                         | Description                                                                                                                                                                                                                            |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WP1: Detector and physics<br>performance simulations | Layout optimization by means of MC simulation                                                                                                                                                                                          |
| WP2: SiPM sensor and module characterization         | <ul> <li>Sensor optimization to improve PDE, fill factor, DCR, radiation hardness and timing response</li> <li>Characterization in lab, beam test and irradiation tests</li> </ul>                                                     |
| WP3: SiPM module                                     | Module layout (2.5 D with interposer), sensor interconnection and assembly                                                                                                                                                             |
| WP4: FEE and RO system                               | FEE ASIC and R/O system (including LPGBT and VTRX+ optical links)                                                                                                                                                                      |
| WP5: Aerogel                                         | <ul> <li>Characterization (optical, mechanical) R&amp;D : transmission, refractive index, dimension, flatness, radiation hardness</li> <li>Mechanics: tooling for handling and mounting, alignment procedure and monitoring</li> </ul> |
| WP6: Cooling and annealing                           | <ul> <li>Cooling plant and integration in module</li> <li>Thermal shield design</li> <li>Annealing system R&amp;D</li> </ul>                                                                                                           |
| WP7: Mechanics                                       | <ul> <li>Module and sector design</li> <li>Leak-tight vessel</li> <li>Super module mechanics</li> </ul>                                                                                                                                |
| WP8: Integration                                     | Service integration: gas, cooling, power supply system, detector safety system                                                                                                                                                         |

## Work Package proposals: MID

| Work package                                      | Description                                                                                                                                                                                        |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WP1: detector and physics performance simulations | Layout optimisation (MID chambers, absorber) using MC simulations                                                                                                                                  |
| WP2: Module                                       | SiPM: sensor optimisation to improve PDE, radiation hardness and timing response.<br>Scintillator: transmission, refractive index, dimension, flatness, radiation hardness.<br>MWPC: module design |
|                                                   | RPC: module design                                                                                                                                                                                 |
| WP3: FEC and RO system                            | FEC and RO system (including LPGBT and VTRX+ optical links)                                                                                                                                        |
| WP4: Mechanics                                    | Super module mechanics<br>Mechanical integration                                                                                                                                                   |
| WP5: integration                                  | Service integration: power supply system, detector safety system, detector control system                                                                                                          |
| 4                                                 |                                                                                                                                                                                                    |



### Outlook

- The coming year is a crucial phase for ALICE 3
- Review of scoping and resources by LHCC, by March
   In parallel, continue internal assessment of scope vs feasibility
- R&D has to lead to defining sensor technologies, and move to full-system design phase
  - This week, clear broadening of R&D scope in all subsystems
- Start more structured approach in Working Groups
  - Work Packages to define goals, timeline and consolidate engagement
- Roadmap with milestones to quantify progress towards TDR-level projects

# Thanks to our Hosts at IFJ-PAN: acek and Marek, Sándor, Adam, Sah Iwona, Olga, Katarzyna, Andrzey Thanks, ALICE 3 WG Coordinators Thanks, FoCal & ITS3 Pl cipants!