

FoCal summary and outlook

5th ALICE UPGRADE WEEK in Kraków, October 11th, 2024

Ian Gardner Bearden (Univ. of Copenhagen) *and* Tatsuya Chujo (Univ. of Tsukuba)

EPIPHANY conferente (2019)

Initial state and forward physics at LHC

 \sim New physics potential investigating the forward region at LHC and FoCal proposal in ALICE ~

Tatsuya Chujo

Univ. of Tsukuba for the ALICE collaboration

AÑA 筑波大学 University of Tsukuba

XXV Cracow EPIPHANY Conference on Advances in Heavy Ion Physics January 8-11, 2019, Cracow, Poland

From 2019 to 2024

ALICE-TDR-022

 $\begin{array}{ll} \mathrm{CERN-LHCC} \ \mathrm{18/6} / 2024 \end{array}$

FoCal TDR (2024)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Technical Design Report of the ALICE Forward Calorimeter (FoCal)

ALICE Collaboration*

A bstract

This report presents the technical design of the ALICE Forward Calorimeter (FoCal). FoCal is an upgrade of the ALICE experiment at the LHC, to be installed during Long Shutdown 3 for data-taking in the period 2029-2032. FoCal consists of a highly granular Si+W electromagnetic calorimeter combined with a Cu+scintillating-fiber hadronic calorimeter, covering pseudorapidity $3.2 < \eta <$ 5.8. FoCal has unique capabilities to measure direct photon production at forward rapidity, which probes the gluon distribution in protons and nuclei at small-x, and is theoretically calculable at high precision. Furthermore, FoCal will enable to carry out inclusive and correlation measurements of photons, neutral mesons, and jets in hadronic pp and p-Pb collisions, as well as I/ ψ production in ultra-peripheral p-Pb and Pb-Pb collisions, and hence significantly enhances the scope of the ALICE physics program to explore the dynamics of hadronic matter and the nature of QCD evolution at small x, down to $x \sim 10^{-6}$.

@ 2024 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

*See Appendix C for the list of collaboration members

FoCal collaboration meeting in Krakow (Oct. 2024) 3

9 Main Auditorium (Aula) ۱q (Padova (IT) i to the FoCal-E cooling system with respect to the quality assurance based on IFJ PAN $\,$ (0.20m) ewski (Polish Academy of Sciencas (PL)) Quality_TCM_FOCA...

- 12 talks on Monday
- 9 talks on Tuesday
- 1 talk on Thursday
- 1 talk on Friday (this talk)

Total: 23 talks

FoCal-E (pad, pixel)

Electromagnetic Calorimeter

Collision Point (IP2)

FoCal-H

Hadronic Calorimeter

 $z = 7m$

Forward Calorimeter (FoCal)

Main Observables:

- π^0 (and other neutral mesons)
- Isolated (direct) photons
- Jets (and di-jets)
- **Correlations**
-

 $3.4 < \eta < 5.8$ $\eta = -\ln(\tan(\theta/2))$

- $-$ LHC ALICE, $\sqrt{s_{NN}} = 8.8$ TeV, pp, pA
- Non-linear QCD evolution, Color glass condensate, initial stages of Quark Gluon Plasma (QGP)
- Physics in LHC Run 4 (2030-2033)
- **- TDR approved by LHCC on March 2024**

 $\frac{3.4}{1}$ S i.0
FoCal LoI : <u>[CERN-LHCC-2020-009](http://cds.cern.ch/record/2719928)</u>
FoCal TDD : CEDN LUGG 8894.994 FoCal TDR : [CERN-LHCC-2024-004](https://cds.cern.ch/record/2890281)

FoCal-H Conventional metal-scintillator design Cu capillary-tubes enclosing BCF scintillating fibers

- -
- Pixel: position resolution to resolve overlapping showers
	- CMOS MAPS technology (ALPIDE)

20 layers of W(3.5 mm $\approx 1X_0$) + silicon sensors:

FoCal detector design 5

FoCal status

- 1) FoCal-E PIXEL
- 2) FoCal-E PAD
- 3) FoCal-H
- 4) Readout
- 5) Cooling and Mechanics

1) FoCal-E PIXEL

Reminder: FoCal-E Pixel layer structure

12-chip string inner layers

- 6 inner mode ALPIDEs per string @1.2 Gbps links
- 6 outer mode ALPIDEs per string @400 Mbps links

72 ALPIDEs per layer 4 layers 288 ALPIDES

15-chip string inner layers

- 6 inner mode ALPIDEs per string @1.2 Gbps links ٠
- 9 outer mode ALPIDEs per string @400 Mbps links

90 ALPIDEs per layer 16 layers 1440 ALPIDES

15-chip string outer layers

• 15 outer mode ALPIDEs per string @400 Mbps links

90 ALPIDEs per layer 24 layers 2160 ALPIDES

8th October 2024

Max Rauch

Reminder: FoCal-E Pixel layer string prototype

- Photo shows fully assembled pixel half-layer prototype for Bergen protonCT detector
- Base plate is a 5 mm thick aluminum carrier (Al-carrier)
- FoCal will use 12 or 15-chip strings (9-chip string shown)

Max Rauch

- Voltage drop along the flex < 100 mV \rightarrow within specifications for both Al-foil thicknesses
- Decision to use 150 um Al-foil technology (preferable etching properties)

Max Rauch

Pixel layer production sites + CCNU, Wuhan, China $+$... **UIB/SVN HIP Helsinki** LTU Kharkiv **CERN** 39 JCTODET 4024

ALPIDE glue-jigs

- Glue-jigs produced by CCNU, Wuhan, China, arrived at University of South-Eastern Norway
- Use case
	- Aluminium carrier boards with 3 flex-cables premounted will be received
	- Glue of ALPIDE chips to the AI-carrier boards
- Different versions of 9-chip, 12-chip and 15-chip layers
- Waiting for aluminum carriers fro Al-carriers from LTU, Ukraine

Photo: Jørgen Lien, USN

FoCal-E Pixel BUSY Violation Overview

- Main objective during our short Pixel test series: occupancy in the pixel layers
- Dead time because BUSY violations expected at LHC (pp, pPb, PbPb)
- Possible measures of occupancy reduction
	- Grid masks of the ALPIDEs (data taken May 2023)
	- Decreased trigger frequency / longer frame length (incomplete data taken May 2023 + Sep 2024)
	- Back bias voltage \rightarrow less occupancy (data taken September 2024)

MEB

Occupancy with back-bias voltage

- TDR assumption: Reduction of average pixel cluster size by 75%
	- Pixel cluster size reduced from 4 to 3 in simulation
- Back-bias tests indicate $~60\%$ occupancy reduction at 3 V back-bias

• Advantages

- Less hits \rightarrow less BUSY violations \rightarrow less detector deadtime
- Reduced data rate

• Potential problems

- ALPIDE yield that can stand back-bias
- Back-bias distribution on the carriers
- Radiation damage under back-biased condition

Max Rauch

 $10 - 10^{10}$ and

Unbiased

Back-biased

 $V_{BB} = 3V$

eptaxel worr

IAROBIA FIX

$(normalized)$
 $\frac{1}{2}$ **ALICE FoCal-E Pixel** SPS H2 September 2024 Pixel layer 10 100 GeV, electrons Work in progress $E_{0.08}$ $V_{\text{BB}} = -0 V$ $-V_{BB} = -1 V$ $V_{\text{BB}} = -3V$ $-V_{BB} = -5V$ 0.06 0.04 0.02 3000 4000 6000 2000 5000 1000 Number of hits

2) FoCal-E PAD

Motoi Inaba

Silicon Pad sensor

Ver. 6 was the latest version (delivered in December, 2023)

- Done: The I-V characteristics (0-to-1kV),
- Done: The C-V characteristics (MPD only so far),
- Done: The irradiation test at Riken RANS facility in May 2024 (Two main sensors, 1x1 baby sensors and MPDs on the half-moon wafers),
- Done: The temperature dependence test.
- Not yet: The MIP measurement \rightarrow Coming beam tests in December and February.
- Not yet: The dynamic range test $(?) \rightarrow$ Using a high-intensity laser source.

Indian p-type sensor

7-10-2024

Sanjib Muhuri

Summary

- ✔ 5 good detectors made
- √ IV, CV done for them
- \checkmark I_{leakage} is ~80nA

Status

- ✔ One detector reached VECC
- \sqrt{PCB} attachement done
- V Test setup and checks started.

Tungsten alloy plates Takashi Hachiya

- Materials: HAC2,
- \cdot HRB: 103,
- Density: 17.8 $g/cm³$,
- Size and thickness:

- 464 x 84 mm² and 3.5 mm in thickness.
- Blind-hole and screw-thread machining:
	- 3 blind-holes on the bottom side and 4 screw holes on the sides. A depth < 4 mm \rightarrow An ordinary cutting machining, A depth > 4 mm \rightarrow An electrical discharge machining (= Expensive).
- Mass production:
	- A new fabrication method will be available for our wide plate. Old: A standard press method.
	- New: Plastic processing (rolling) method. \rightarrow W particles become elliptical such as a shape extending in the L (horizontal) direction. FP-1013 $A \rightarrow 44$ plates for the pixel layers.] A first half in 2025 and FP-4013 $\vdash \rightarrow$ 396 plates for the pad layers. $\lceil \cdot \rceil$ a second half in $2026 (+ 1)$ spare)
- Quality control:

All plates will be tested using a new test station with high-precision thickness sensors and edge-extractable digital microscopes.

Motoi Inaba 18

- Test production (3 plates) in 2024
- Mass production in 2025/2026
- Quality control system on flatness

We have two designs of the single-pad PCB with the **HGCROC2 ASIC, and it is better to compare them with** each other in the same condition.

- \rightarrow Beam tests at the KEK and ELPH-PARIS in December this year and in February in 2025, respectively, is a good opportunity to do it.
- A good S/N for the MIP measurement.
- A good insulation from a heat of the HGCROC ASIC and LDOs to the sensor.
- A good electrical insulation to the sensor.
- A good flatness.

Single-pad PCBs with the HGCROC-series ASIC in Japan.

- Based on the 10-layer design by Grenoble which showed good performances.
- There is no fear of wire bonding.
- Some PCBs will be available by the end of this year.
	- The PCB with HGCROC2 for KCU105 (Additional fabrication)
	- The PCB with HGCROC2 for the flat-cable connection,
	- The PCB with HGCROC3 (and 3A) for KCU105 (to develop / study a firmware)
	- The PCB with HGCROC3 (and 3A) for the flat-cable connection (for the final ver.)

Single pad PCB Nicola Minafra

Motoi Inaba 19

- Designing of PCB in Japan is ongoing
- Comparison of two design in 2024 with HGCROC3 in Japan
- Fix the design by the end of 2024, production in 2025

Pad model assembly

Taichi Inukai 21

HGCROC test station

Taichi Inukai 22

HGCROC2 test results **Important step for mass production: obtain own calibration procedure and put in DB**

Scope for HGCROC3

◆ Set up the test environment for HGCROC3 12 HGCROC3 chips were already provided from OMEGA

- We want to use current setup
- Need to upgrade v2 firmware for v3 (by Prof. Osana)
- Need to check pin assignment (almost same)
- ORNL comes to Tsukuba to set up testing environment (next November?)

\blacklozenge Establish the test system for 2000 chips

Taichi Inukai **Yasunori Osana**

HGCROC3

Neutron irradiation test at RANS

1st layer results

Yuka Sasaki 24

1.12 x 1014 (n/cm2) 4.34 x 1012 (n/cm2) → Shown in TDR → used final p-type sensor

Test beam in Japan, synergy with EIC

Lab measurements for irradiated main sensor

Jonghan Park (Univ. of Isukuba)

Irradiated pad sensor performance at room temperature

-
- •Important feedback to cooling system.
- sensor, temperature dep.
- •ELPH test beam in Feb. 2024 (800 MeV electron): HGCROC3 test
- •Discussed the strong synergy between FoCal and EIC-ZDC

• Lab test: @ room temperature, irradiated main sensor (10¹⁴ (n/cm²)) shows a clear MIP peak.

•KEK test beam in December 11 - 16, 2024 (1-5 GeV, electron): final sensor test with MIP, irradiate

3) FoCal-H

FoCal-H Prototype 2

-
- Each tube contains a 1 mm Luxium BCF-12 scintillating fiber.
- The center module is read out by a 7x7 array of SiPMs
- The outer module is read out by 5x5 arrays of SiPMs
- SiPMs: Hamamatsu S13360-6025 (6x6 mm² 25µm SPADs)
- 249 readout channels (49 center, 8x25 periphery)

• $96.5x6.5x100 cm³$ modules of 668 2.5 mm OD 1.1mm ID Cu capillary tubes

FoCal-H Test Beam September 2024

- Analyzable physics data $1.$ with H2GCROC proto readout
- 2. Use (and characterize) **ToT** for large signals
- 3. Collect data with different Current conveyor settings
- 4. "stretch goal": combined events with Pixels

H2GCROC in beam September

ADC distributions

Ian Gardner Bearden 29

FoCal-H SiPM Radiation Tolerance?

SiPM candidates

- Large-size SiPMs considered (6x6 mm²) to simplify bundle \bullet assembly and minimize the number of FEE channels.
- \bullet

Yury Melikyan 30

Hamamatsu S13360

Two candidates pre-selected from specs data and market availability - HPK S13360 & NDL EQR 20.

Effect of zero-fluence vs few-days-fluence vs yearly fluence

At +25°C, response of the HPK drops down to ~20% throughout the year

AND

very high digitization errors arise for pulses below ~1000 photons.

Implications:

- SiPMs cannot tolerate the dose at small R (from ϵ (cm) beam) between annealings
- \cdot Cure: cool (\approx -30C) or move R>30.
- Chilled water is \approx 14C
- Need to move "inner" SiPMs outward.

Fast simulation using ML for HCal

Emilia Majerz 33

4) Readout

Clear picture of readout scheme for all three subsystems and connections

Nicola Minafra 35

Clear picture of readout scheme for all three subsystems and connections

Nicola Minafra 36

Thanks to M. Bregant

FoCal trigger discussion

FoCal Trigger

The bottom line:

Pads and HCAL need a trigger, no problem with latency, max rate ~1 MHz Pixels don't need a trigger (continuous mode) but using a trigger is possible to reduce occupancy (and indirectly pileup). Problem: max trigger latency 1 us

Possible configurations:

· ALICE Trigger:

too long? $CTP \rightarrow LTU \rightarrow CRU \rightarrow RU \rightarrow ALPIDE$

· ALICE "fast" Trigger:

still too long? $CTP \rightarrow LTU \rightarrow CRU \rightarrow RU \rightarrow ALPIDE$

 $PADs \rightarrow FTP \rightarrow RU \rightarrow ALPIDE$

Nicola Minafra

Pixels: Power board

Pixels: Production Test Box Pixels: Transition Card **Production Test Box** Pixels: Transition Card **38**

Nicola Minafra

Pixels: Readout Unit Firmware Pad: Front-end

Many project are ongoing towards finalization!

HCal Readout -Intermediate testing with a KCU or other FPGA board -Looking forward to test with the CRU LpGBT firmware

Nicola Minafra

Many project are ongoing towards finalization!

5) Mechanics and cooling

Cooling system simulation and analytical calculation

THE HENRYK NIEWODNICZAŃSKI
INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

FOCAL - E MODEL AND TEMPERATURE SIMULATION FOR PROTOYPE

Focal-E: Prototype model

ingsten temp 20.11 19.31 18.51 17.71 16.91 16.11 15.32 14.52 13.72 12.92

Boundary conditions:

- Water flow of 4 l/min for one HE \bullet
- Inlet water temeprature 12 °C \bullet
- Free Convection (air temeprature 20°C) \bullet

Heat value to remove (assumption)

- Plate with HGCROC: 12,5 W \bullet
- Plate with Pixel layer: 18 W \bullet

Focal-E: result of numerical ANSYS analysis

Maciej Czarnynoga 42

FoCal position system

FoCal lifting system

Summary and outlook

- FoCal TDR has been approved in March 2024
- Moving towards the construction for Run-4 physics data taking
- Three subsystems (PIXEL, PAD, HCal), readout and mechanics/cooling groups are working coherently towards the common goal
- Please join the FoCal group and let's work together!
- Service tasks on FoCal will be opened soon

