Development path for a Vertex Detector Pixel Sensor

Vertex Detector Pixel Sensor | AUW2024 — Cracow | 2024-10-09 | Felix Reidt, Walter Snoeys (CERN)

Introduction — main objectives

Pointing resolution

- \rightarrow position resolution (2.5 µm) \rightarrow pixel pitch (O(10 µm)) \perp low power consumption
- \rightarrow material budget 0.1% X₀/layer \rightarrow low power consumption
- \Rightarrow Power consumption per pixel is crucial

Pb-Pb operation

- \rightarrow enormous event size fluctuations
- \rightarrow large bandwidth or buffering close to the pixel needed
- \rightarrow more complex digital circuitry
 - ⊥ small footprint and/or low power consumption

pp operation

- \rightarrow high event rate (24 MHz) \rightarrow time resolution (O(100 ns)) needed to limit pile up
 - \perp low power consumption
- \rightarrow large statistics required \rightarrow high radiation tolerance required \rightarrow favouring smaller pixel pitch

$O(10 \ \mu m)) \perp$ low power consumption or consumption

2

Introduction — main objectives (continued)

ALICE 3 vertex and tracking detector requirements

	ALICE ITS3	ALICE 3	
		Vertex Detector	Tracker (ML/OT)
Position resolution (µm)	5	2.5	10
Pixel size (µm ²)	O(20 x 20)	O(10 x 10)	O(50 x 50)
Time resolution (ns RMS)	O(1000)	100	100
In-pixel hit rate (Hz)	54	120 94	54 42 (barrel)
Fake-hit rate (/ pixel / event)		<10-7	
Power consumption (mW / cm ²)	35	70	20
Particle hit density (MHz / cm ²)	8.5	120 94	0.8 0.6
Non-Ionising Energy Loss (1 MeV n _{eq} / cm ²)	3 x 10 ¹²	1 x 10 ¹⁶	6 x 10 ¹³
Total Ionising Dose (Mrad)	0.3	300	3 (barrel)
X/X ₀ / layer	0.09% (average) 0.07% (most of active region)	0.1%	1.0%

- Radiation load dominated by pp due to the longer running time

Updated for ~300 kHz Pb-Pb

• A Pb-Pb interaction rate of the ~ 300 kHz corresponds to hit rates similar to 24 MHz pp

Key development items / what is available

Key development items

- Front-end circuit
- Pixel geometry
- Readout circuit
- Serial powering

What is available from / currently being developed by ITS3 / EP R&D

- Slow control interface
- High-speed line drivers (including PLL and linear regulators)
- Lightweight IpGBT data formatting and scrambling
- Voltage and current bias generation circuitry including band gaps
- Analogue monitoring including ADC
- Low leakage current standard cell library

Reticle-sized chip or stitching?

depends on mostly power consumption and distribution

Front-end circuit

- Development goals
 - Smaller footprint (to fit inside a 10µm pitch pixel)
 - Reduced complexity: fewer transistors and fewer bias currents and bias voltages
 - Reduced power consumption for the same performance / speed
 - Increased radiation hardness
 - Reduced fake-hit rate

- Development path
 - Simulation studies for first validation
 - Submission of a small-scale prototype
- Status

- First simulation of a new concept has started

Trade-off between small pixel and low power consumption (material budget)

Pixel geometry

- Development goals
 - Radiation hardness: sufficient charge collection at 10¹⁶ 1 MeV n_{eq}/cm²
 - Improve charge transport from the pixel edges and corners
 - Capacitance reduction:
 - Increase signal voltage for a given charge
 - Reduction of the analogue power consumption $P \propto C^{-2}$
- Development path
 - TCAD simulations
 - Characterisation of small / medium scale prototypes (APTS/DPTS/CE65)
 - Further detailed study of existing process splits at radiation levels beyond ITS3 and cryogenic temperatures
 - New process splits in upcoming Engineering Runs (ERs)

Status:

- Continuously ongoing process, current focus on ITS3 with limited reverse substrate bias
- Reproduction and understanding of findings from prototype chips

Readout circuit

- **Development goals**
 - Small footprint (to allow 10 µm pixel pitch)
 - Versatility:
 - 24 MHz pp operation \rightarrow time granularity
 - 315 kHz Pb-Pb operation \rightarrow strong occupancy variations

• Development path

- Architecture simulation in software:
 - Ensure loss less data transport under all expected conditions
 - Obtain expected data throughput and necessary
 - Optimisation of the de-randomization / buffering
- RTL entry and layout:
 - Assessment of the footprint of the circuitry
- Validation in a small-scale or full-scale prototype chip

- Status: simulation of architectures ongoing
- Example:
 - Multi-dimensional projections ('Orthopix' [1])
 - Four orthogonal projections
 - Projections are very simple circuit-wise ('wired-OR')
 - Fixed event size independent of the occupancy: $4 \cdot \sqrt{N_{Pixels}}$
 - Few transitions in the data stream: power efficient
 - No hit losses, only hit ambiguities (\approx fake hits)
 - Overwhelming fake-hit rate for most central Pb-Pb and realistic matrix sizes

Serial powering

- Concept: modules connected in series
 - \rightarrow all modules need to consume the same current
 - \rightarrow ensured by shunt regulators 'burning' excess current
 - Baseline for Vertex Detector, Middle Layers
- **Development goal**
 - Shunt regulator in TPSCo 65 nm process to be integrated in pixel chips
 - Optional: charge pump generating reverse substrate bias
- Development path
 - Characterise performance of existing pixel chips when serially powered
 - Port existing shunt regulator from TJ 180 nm [1,2] or TSMC 65 nm [3] to TPSCo 65 nm
- Status: to be started

[1] D. Gajanana et al. (2016) JINST 11 C03027 Radiation hard analog circuits for ALICE ITS upgrade

[2] A. Habib et al. Shut Regulator for the Serial Powering of the ATLAS CMOS Pixel Detector Modules. 10.1109/TNS.2020.2964333 [3] A. Dimitrievska, A. Stiller NIM A (2019) 958 162091 RD53A: A large-scale prototype chip for the phase II upgrade in the serially powered HL-LHC pixel detectors

Vertex Detector Pixel Sensor | AUW2024 — Cracow | 2024-10-09 | Felix Reidt, Walter Snoeys (CERN)

Summary and Outlook

- Work slowly ramps up in the shadow of ITS3 activities •
- Analogue front-end circuit and pixel optimisation most urgent to be prototyped
- Readout architecture can be mostly evaluated without a prototype submission
- Serial powering
 - Little experience so far in the ALICE context
 - Needed for Vertex Detector, Middle Layers and Outer Tracker

Thanks a lot for your attention!

10