
Electrical Tests on MCBXF Coils

M. Domínguez, F. Toral (CIEMAT)

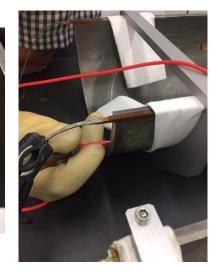
- 1. Before starting the tests
- 2. DC Resistance test
- 3. Insulation test
- 4. Impedance test: frequency sweep

□ Before starting the tests:

- Coils should be thermally stabilized: 6h at 22±2 degrees Celsius and RH < 60%</p>
- > Measuring equipment switched on one hour in advance
- Coil current leads should be kept away from each other and properly insulated to avoid undesired electrical contacts

□ RDC: DC resistance test

- 4-wire R measurement usually enough
- > For very low R, a current source should be used (usually 1A)


		Ref margin=	2	%					
	Reference	Ref Top	Ref Bottom	OCBS04	OCBS05	OCBS06	OCBS07	OCBS08	OCBS09
R	4.14265	4.225503	4.059797	4.2158	4.265	4.097	4.078	4.145	4.136
Т	20	20	20	16	21	18.4	17	19.8	20.9
Rcorr	4.14769235	4.2306462	4.06473851	4.28207238	4.24823855	4.12276194	4.12607962	4.14825797	4.12137097

Insulation

- > HV test: Megger. With MCBXF up to 1000V
- > Test all the accessible metallic parts versus the coil to assure a correct insulation
- > 30 seconds (Leakage + Polarization currents) and 300 seconds (Leakage current) tests

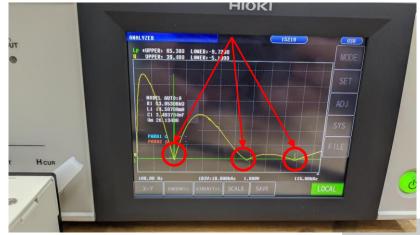
Insulation resistance	U[test]	time	measured	nominal	measured	nominal
	[V]	[5]	[GΩ]	[GΩ]	[nA]	[nA]
Loading plate (Layer jump)	1000	30	387.00	>1	2.63	<1000
Loading plate (Layer jump)	1000	300	>2T	>1	0.08	<1000
Loading plate (No Layer jump)	1000	30	238.00	>1	4.27	<1000
Loading plate (No Layer jump)	1000	300	1986.00	>1	0.51	<1000
Central post (leads side, outer)	500	30	>17	>1	0.12	<1000
Central post (leads side, outer)	500	300	>1T	>1	0.01	<1000
Central post (leads side, inner)	500	30	>17	>1	0.27	<1000
Central post (leads side, inner)	500	300	>11	>1	0.00	<1000
Central post (return side, outer)	500	30	>1T	>1	0.04	<1000
Central post (return side, outer)	500	300	>1⊺	>1	0.00	<1000
Central post (return side, inner)	500	30	>1T	>1	0.07	<1000
Central post (return side, inner)	500	300	>1⊺	>1	0.00	<1000
Endshoe (leads side, outer)	1000	30	700.00	>1	1.45	<1000
Endshoe (leads side, outer)	1000	300	>2T	>1	0.03	<1000
Endshoe (leads side, inner)	1000	30	842.00	>1	1.21	<1000
Endshoe (leads side, inner)	1000	300	>21	>1	0.06	<1000
Endshoe (return side, outer)	1000	30	429.00	>1	2.37	<1000
Endshoe (return side, outer)	1000	300	>21	>1	0.05	<1000
Endshoe (return side, inner)	1000	30	1575.00	>1	0.75	<1000
Endshoe (return side, inner)	1000	300	>2T	>1	0.04	<1000

Ciem

Impedance measurements

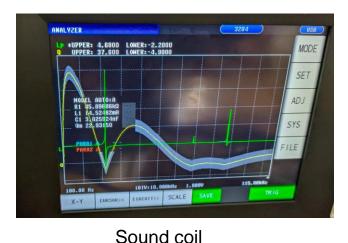
- Impedance Analyser Hioki IM3570
- We apply a frequency sweep (variable frequency sinusoidal signal) from 100 Hz to 100 KHz
- Maximum voltage 5V peak to peak...
- …and few mA: extremely safe test!
- > Objective: find the resonant frequencies
- Measured parameters: L and Q (Quality factor)

Why are the resonance peaks so important?

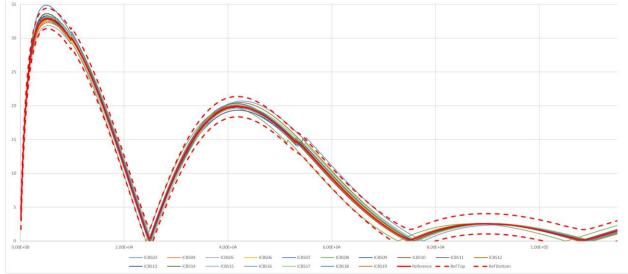

> The peaks are very narrow, happening at a very specific frequency, any little change in the coil characteristics will change them in a perceptible way

$$f_0 = rac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

- "This is a coil... There should be only L!!!!" The ideal coil does not exist, so we have indeed several C's: capacitance to ground, interturn capacitance, inter-layer capacitance, etc. This is why we can see several resonance peaks
- "Those C's should be negligible!!!!"


That is only true at very low frequencies. At high frequencies they can even have a higher value than the actual L

- How do we find them?
 - L parameter (green): Zero crossing
 - Q parameter (yellow): graph minimums (reaches zero). Much easier to detect


□ The quality factor (Q) of a coil is very sensitive to an inter-turn short circuit:

Short-circuited coil

This is mainly a comparative test. Database with reference and window margin to compare results

Thank you for your attention!