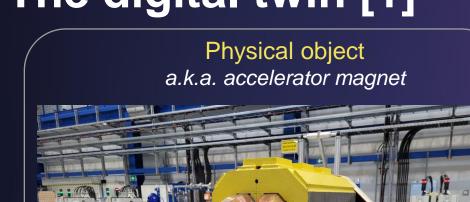
ENTSO-E European R&D meeting

Developing Digital Twins for Accelerator Magnets

Melvin Liebsch


- TE-MSC-TM -

Agenda

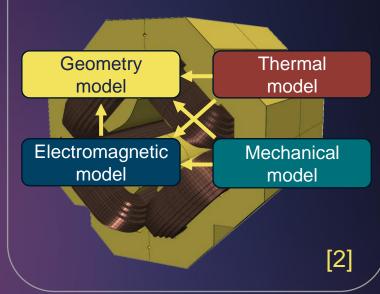
Learning from data through the lens of models is a way to exploit structure in an otherwise intractable problem [6]

- The digital twin of the accelerator magnet
- Challenges
- Integration in the life cycle management
- Conclusion

The digital twin [1]

Communication channel

Data


Measurements and inputs

Information Prediction

State observation

Digital representation

a.k.a. numerical system model

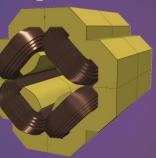
→ The digital twin requires multi-physical modeling

[1] Piascik, R., et al., Technology Area 12: Materials, Structures, Mechanical Systems, and Manufacturing Road Map. 2010, NASA Office of Chief Technologist. [2] M. Maciejewski, B. Auchmann, D. M. Araujo, G. Vallone, J. Leuthold and J. Smajic, "Model-Based System Engineering Framework for Superconducting Accelerator Magnet Design," in IEEE Transactions on Applied Superconductivity, vol. 33, no. 5, pp. 1-5, Aug. 2023, Art no. 4003105, doi: 10.1109/TASC.2023.3249647

Accelerator magnet life cycle

Magnet operation

- State observation
- Prediction
- Maintenance



Test

Report

Data

Design

Report

Virtual prototyping

- Coupled multi-physics optimization
- Integration in virtual environment
- Multiscale modeling

Series manufacturing

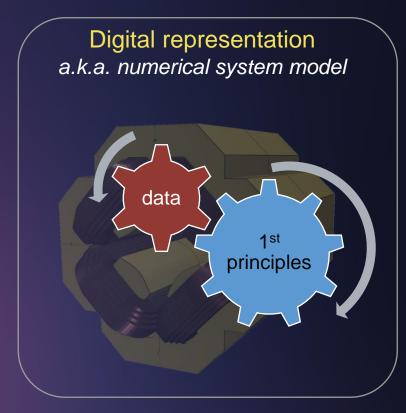
- Quality assurance
- Fault detection and correction procedures
- Magnet alignment data
- Magnet transfer function

Prototype manufacturing/testing

- Calibrating material properties
- Optimal experimental design

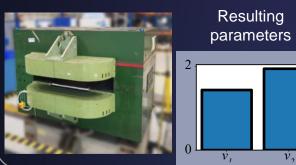
Communication frequency

→ Document based information exchange → Communication frequency depends on the application → Data management secretes > EMNGel Halle di ORMA, PLM

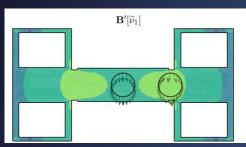

Drawings

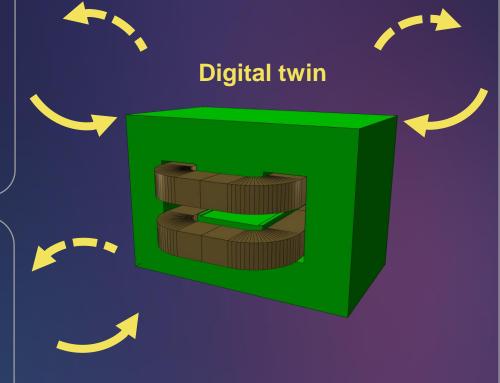
Product life cycle

Challenges

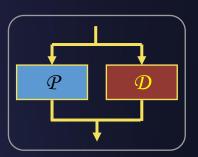

- Complex (non-linear) dynamic system
 - Interplay of iron saturation, hysteresis and eddy currents
 - Superconductor magnetization
 - Temperature effects
- Computational costs
 - A complete 3D magnet simulation does not allow for fast predictions
- Tough requirements for machine operation
 - Field stability at 1 unit in 100 000
 - Field quality at 1 unit in 10 000

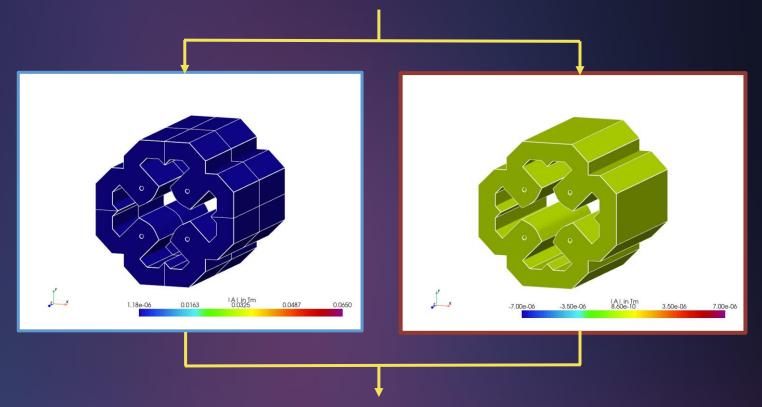
- → Measurement data needs to be integrated in the numerical model to enable accurate predictions
 - → The digital twin is a hybrid model


Example – Model Calibration [3]


Calibration test campaign

Design of a test campaign

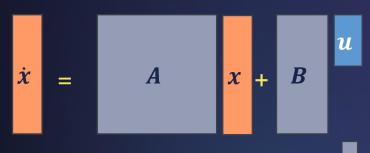

Design of experiment (DOE) optimal sensor placement



Magnet manufacturing QA Material Specimen Permeameter H(B)-curve B in T Pattern recognition (KLE)

Example – Discrepancy Models

- Discrepancy between measurement and simulation may not vanish after magnet calibration
- Discrepancy drives the delta model
- Delta model *implies Maxwell's* equations in the vacuum domain $\operatorname{curl} \boldsymbol{H} = \boldsymbol{0}$, $\operatorname{div} \boldsymbol{B} = 0$
- Boundary element or volume integral methods have been used

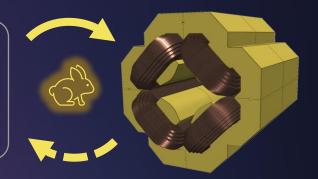

Magnet operation

Requires rapid information exchange

Model order reduction (MOR) [5]

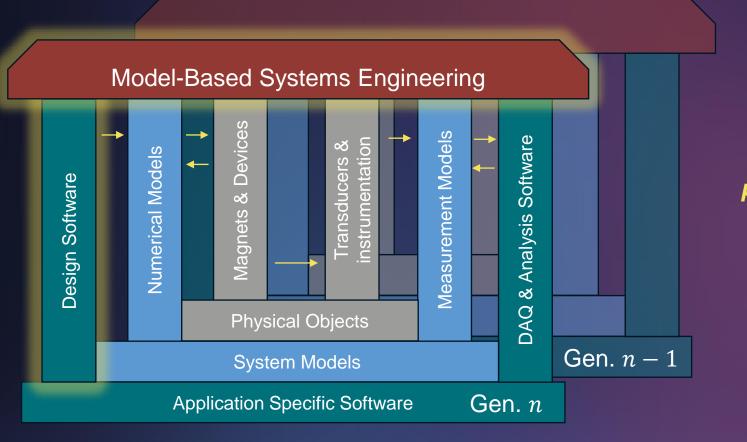
$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\,\boldsymbol{x}(t) + \boldsymbol{B}\,\boldsymbol{u}(t)$$

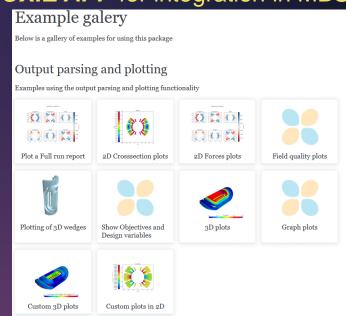
High fidelity model


Reduced order model (ROM)

x: State vector, u: Input vector, \hat{x} : ROM state

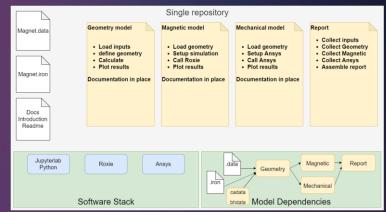
Magnet operation


- State observation
- Prediction
- Maintenance


- Nonlinear dynamics and hysteresis need to be observed
- High accuracy is required
 - Field integral better than 1 unit in 10 000
- Objective conflict: ROM is faster, but less accurate than the full model!
- Solution: Field integrals are measured at run-time
 - c.f. B-train online monitoring systems
- Domain knowledge is derived from the digital twin
 - e.g. Local versus integral field

Integration

Integrating the digital twin with Model Based Systems Engineering



ROXIE API* for integration in MBSE

pyMBSE: self-contained multi model execution

*Developed by M. Bonora (TE-MSC-TM)

Conclusion

Developing the digital twin of the accelerator magnet

- Numerical models and simulation data need to be integrated in the development and product lifecycle management
- We must use hybrid modeling to design application specific digital twins
- In doing so we must follow the principles of model-based systems engineering
 - → Traceability, platform independence, versioning
- A collaborative effort in the ATS sector is requited to integrate data from various sections and working groups