Modular SCADA:

CERN JCOP & UNICOS Frameworks and Simatic WinCC Open Architecture

Piotr Golonka
CERN BE/ICS-STF

ENTSO-E R&D Meeting
13 September 2024

https://indico.cern.ch/event/1415872/

About...

CERN BE-ICS group: Central support for industrial technologies

- WinCC OA: de-facto standard SCADA at CERN
 - Central support, collaboration with vendor, distribution, licensing, ...
- Middleware & PLC
- Frameworks: JCOP and UNICOS → standardized technology stacks
 - Central teams for development and maintenance
- Applications
 - Engineering/Development
 - Lifetime maintenance and support (SCADA App Service)

Me

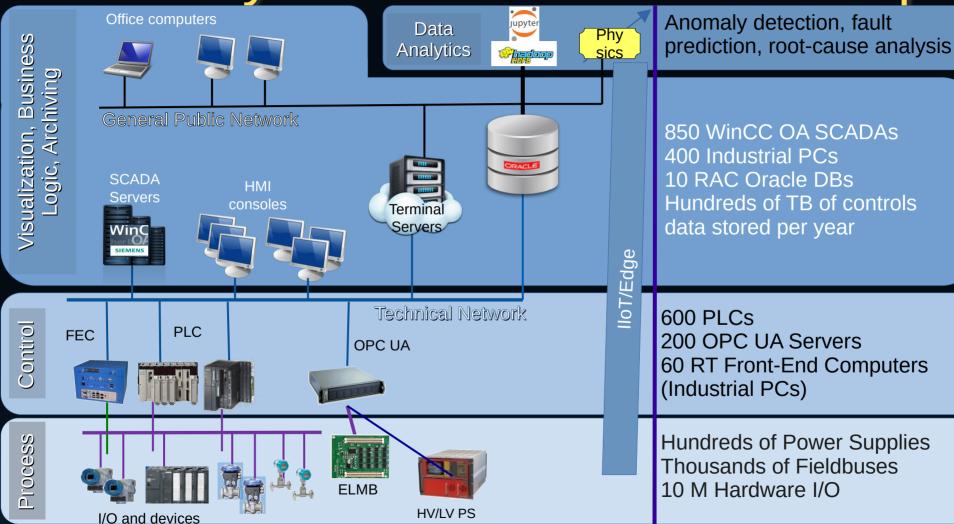
- Software Engineer, PhD in physics, 20 years in the group
- CERN-ETM liaison, responsible for CERN WinCC OA service
- Project leader for the JCOP Framework
- Piotr.Golonka@CERN.CH

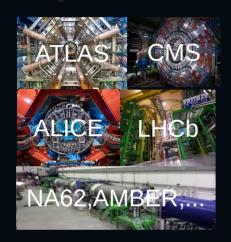
CERN Industrial Controls: Goal

Optimize physics data taking by maximizing uptime and optimal operation of Detectors, Accelerators and Technical Infrastructure

- Implies: maximum availability, optimal operation of all auxiliary systems
 - cryogenics, gas, interlocks, cooling, HVAC, alignment, powering,...
 - detector/experiment control systems
- Additional specific requirements:
 - Environment:
 - radiation areas, strong magnetic field up to 4T
 - Unprecedented number of I/O
 - (3 M h/w channels in ATLAS)
 - Data volumes and rates
 - (e.g. QPS 200.000 changes/s)
 - Large distributed and interconnected systems
 - Complexity (control logic, multiple technologies)
 - Highly de-centralized instrumentation (>27 km)

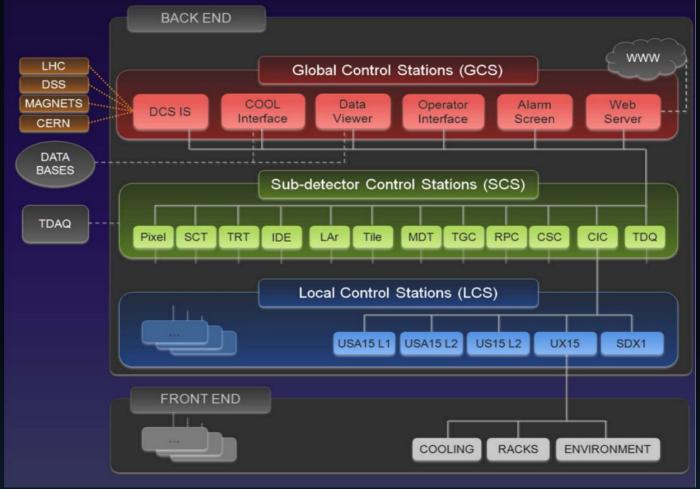
WinCC OA SCADA is the key element in standardization of CERN Industrial Control Systems


WinCC OA SCADA at CERN

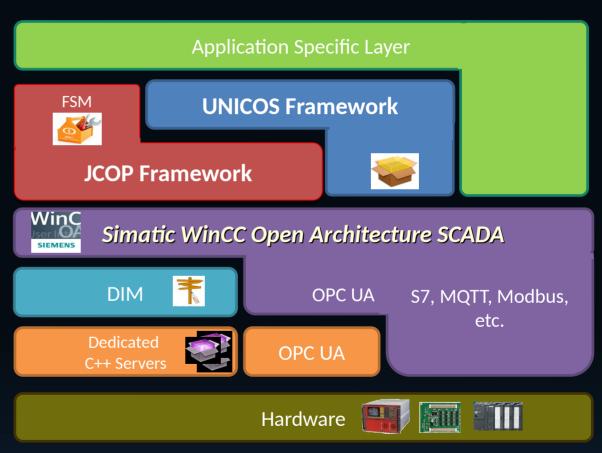

- De-facto standard for the "slow controls" applications
 - Coupled with COTS/industrial as well as custom h/w and s/w
- ~850 production systems →
 - ATLAS: 130 sys, 12M DPEs
 - PSEN: ~1M DPEs in a single system
- Large developer base
 - 500 developers,
 - 150 collaborating institutes,
 - 30 countries
 - 150 training courses,
 - 1100 students

Most important systems are in production since ~2008 yet still evolving New ones implemented all the time (e.g. consolidation of Cooling&Ventilation)

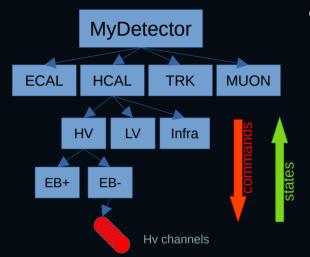
Control system architecture: example


Experiments, Detectors, Collaborations...

Accelerators


- **CERN**: the Laboratory
 - Delivers colliding beams of high-energy particles + infrastructure
- International research Collaborations
 - conduct Experiments at CERN
 - ATLAS, CMS, ALICE, LHCb, NA62,...
 - 1000s of engineers and physicists in 100s of institutes
- They build large and complex Particle Detectors
 - Genuine parts and subsystems (subdetectors) developed in-house in collaborating research institutes, *all over the world*
 - Assembled and integrated at CERN
- Control Systems
 - **Detector** Control Systems: large and complex, SCADA-centric
 - 10M IOs, distributed, partitioned onto 150 SCADAs
 - Development and maintained scattered in research institutes
 - Local control of subsystems needed while subdetectors built/tested
 - Accelerator Infrastructure: Cryogenics, Vacuum, Protection
 - Technical infrastructure (Gas, Safety, CV, Electricity)

Example: Dist architecture in ATLAS



Standardisation and frameworks

- Essential for integration and homogeneity
- Component-based frameworks encapsulate technologies into generic, reusable building block
 - Tools (trending, ConfigurationDB, LDAP)
 - Device integration (OPC-UA, PLCs)
 - Libraries for custom development, ref-panels
 - Conventions and guidelines
- UNICOS: unified way to build control systems
 - Automatic generation/configuration of SCADA
 - Synoptic panels drawn by advanced operators
 - PLC-centric UNICOS-CPC:
 complete engineering from specs to deployment
- JCOP: homogeneous way to integrate very complex distributed control systems
 - Need for tailor-made applications
 - Use of custom hardware and external systems
 - SCADA-centric business logic: **FSM**
- Millions of lines of (CTRL) code
 - Going opensource soon...

Detector Control Systems: Integration

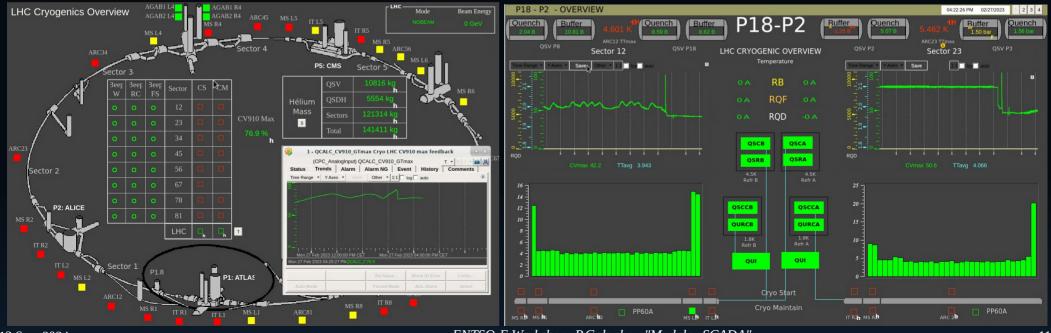
| Control State | Control Stat

- Hierarchical distributed control systems
 - *distribution* feature of SCADA (federation of systems)
 - **FSM** hierarchical control toolbox
 - Abstraction: States, Commands, Summarization Logic
 - Propagated through the tree structure
 - Centralised (integrated) operation by shifters
 - at any level (→ of abstraction) in the tree
 - Dynamically partitioned operation
 - Hand-over of subsystems for local operation by experts
 - Central operation with some systems excluded/not present
 - Tree nodes linked with synoptic panels
- Alarm Screen: integrate/filter alarms from all subsystems
- Central DCS Team: responsible for integration/operation
 - One in each experiment
- Central Support Team: technology, framework, expertise

Joint COntrols Project (JCOP)

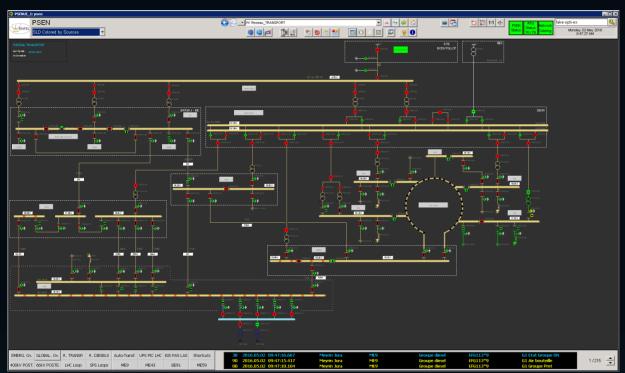
- Collaboration to develop detector control systems of the LHC experiments (1998)
 - Promote reuse, COTS to reduce development and maintenance costs
 - Unprecedented complexity/scale of the projects at that time
 - Central team (development, support)
 - Local teams (in the experiments)

Objectives


- Selection of common SCADA
 - Market survey, evaluation: 10 person-year, long list of criterias
 - WinCC OA selected in year 2000 for its openness, multi-platform and potential to develop partnership with company
 - → essential, solidified through CERN Openlab
- The Framework
 - Conventions, guidelines allowing to integrate numerous developments into a large, homogeneous system
 - Components to be mixed and matched as needed to develop numerous control applications
 - common libraries and tools on top of WinCC OA, Integration of standardized set of devices
 - Lifetime management: releases/versions, upgrades, compatibility, upgrade/migration steps taken care of
- Applications (DSS, GCS, RackControl)

Possible model to draw inspiration for a project with long-term collaboration

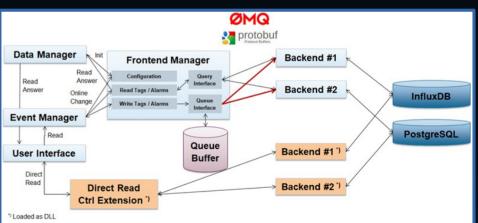
UNICOS Project


- Started around the same time as JCOP
- Initially: ISO-compliant industrial control system for the LHC Cryogenics
- Rapidly gained popularity for numerous other use cases in the ACC/TI sector \rightarrow ~220 SCADAs
- Framework developed/maintained centrally by BE/ICS group; application engineers at CERN
- UNICOS/CPC: complete approach for engineering the PLC-centric applications
- Unprecedented homogeneity and integrability: TIP

Frameworks: availability, support

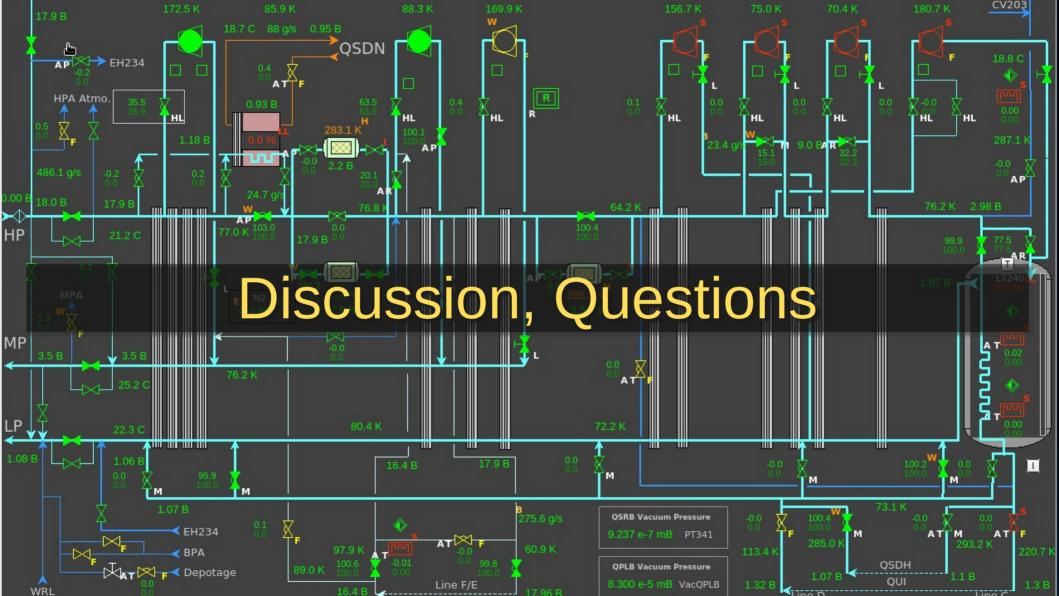
- Very strong dependency on WinCC OA (commercial SCADA from ETM/Siemens)
- Frameworks developed/maintained following CERN needs, by local teams
 - Local project management structures: coordination boards, meetings with stakeholders
 - Yearly releases of the complete framework
 - Independent releases of components: bugfixes, urgent features
 - Porting to new version of SCADA, validation, upgrade procedures, etc
- Support to developers/users community
 - Training, on-site assistance, coaching, consultancy for new projects
 - Central provisioning of WinCC OA licenses and downloads for production and development
 - Follow-up of issues with the SCADA vendor (ETM/Siemens)
- Interest in using the frameworks beyond CERN
 - GSI, ITER, Neutrino platform,
- Open source licensing initiative
 - Main challenge: identify IP ownership and dependencies in the project not developed as Open Source from their beginning
 - Expected release this year
 - Shaping a community of external users not yet clear

Electricity SCADA (PSEN)



- Largest single WinCC OA application
- Hot-standby redundant WinCC OA system
 - 1 server in Prevessin site
 - 1 server in Meyrin site
 - A pair of "Disaster Recovery" servers
- ~70 RTUs
- ~20k primary/secondary devices
- ~300k field measurements
- ~4M DPEs
- ~10M records archived per day
- ~100M value changes per day
- CERN Energy use: similar to Geneva canton
- Complex, dynamically changing
- Weekly engineering

Custom-tailored to CERN needs
Built using framework components and numerous enhancements and specific solutions


Archiving: source of BigData

- Different systems, needs, sizes, data rates...
 - PSEN: 300k signals, 10M evens per day
 - QPS: 130k signals, 17B events per day (200k/s)
 - 850 systems writing to 350 schemas on 5 Oracle databases, hundreds of GB per day
- Long-standing CERN-ETM collaboration topic (since 2005)
- WinCC OA NextGen Archiver
 - Modular, extendable
 - CERN Oracle backend
 - Prototype TimescaleDB backend
- "Offline" databases for physics
- ALICE O²: physics data streaming
- NXCALS for long-term storage and data analysis (Hadoop)

Handling large-scale and long-lifetime

- Uncharted territory 25 years ago...
- Modularization, components as deployment units, release/version management
- Centralized, automated deployment and monitoring tools
- Databases with billions of records
 - A few, large central databases (Oracle)
 - Maintained, tuned, monitored by central group of experts in the IT department
- Maintaining/evolving software projects with 40-year life-span
 - Keep up with accelerating evolution of technologies
 - S/W upgrade campaigns every 3-5 years
 - Component maintainers assure compatibility, migrations, upgrade paths
 - New needs, upgrades (eg. HL-LHC), unhandled corner cases, unexpected use scenarios
 - Backward-compatibility is essential
 - Need for consolidation, architecture evolution
 - Maintaining adequate level of experience/knowledge/context vs high personnel turnover

