Project HighLO and ROOT

May 16th PPP Meeting

Philippe Debie

Project HighLO – Key team

Collaboration: WUR + UM + CERN + CORMEC

HighLO = **High** Energy Physics Tools in **L**imit **O**rder Book Analysis

WUR/UM	/CORMEC	CERN
Joost Pennings (WUR/UM)	Marjolein Verhulst (WU/WEcR)	Axel Naumann
Koos Gardebroek (WUR)	Philippe Debie (WU/WEcR)	Lorenzo Moneta
Bedir Tekinerdogan (WUR)	Tarek AlSkaif (WUR)	Jonas Rembser
Cagatay Catal (WUR)		Danilo Piparo
Andres Trujillo-Barrera (CORMEC)		Han Dols

Project HighLO – Background info

Current finance research lacks the tools

- Huge datasets
- Everything is statistically significant

HighLO

- Adapt more capable software tools (ROOT)
- A new perspective on how to analyze data
- Search and detect market manipulation

Project HighLO – Background info

Side	Price	Volume
	15	5 + 3 + 2 = 10
Ask Side (Selling)	14	4 + 2 = 6
	13	3 + 1 = 4
Did Cida	12	2 = 2
(Buvina)	11	2 + 5 = 7
	10	5 = 5

Limit

Order

Book

CERN

Project HighLO – Background info

Financial market is governed by supply and demand

- Limit order book
- More sell limit orders
- More buy limit orders

- = Summary of all limit orders
- \rightarrow Price goes down
- \rightarrow Price goes up

Spoofing = Placing and cancelling limit orders to push the market (with no intention of execution)

Project HighLO – Research goal

Detect spoofing in the commodity futures market

- 1. Describe how spoofing works
- 2. Detect spoofing
- 3. Help regulators and lawmakers

Spoofing = Placing and cancelling limit orders to push the market (with no intention of execution)

Int. Expert Group on Market Surveillance (IMS)

The Netherlands:

- Exchange: Euronext
- Regulator: Authority for Consumers and Markets
- Regulator: Authority Financial Markets

UK:

• Exchange: ICE Futures Europe

Germany:

- Exchange: Deutsche Börse (FSE, Eurex) USA:
- Exchange: EEX

Switzerland:

- Regulator: FINMA
- Exchange: SIX Group

Italy:

• Regulator: CONSOB

EU:

- Regulator: ACER
- Regulator: ESMA
- Exchange: CME Group
- Regulator: CFTC

Into the Microseconds

Paper submitted to Management Science

Research Questions

1. How to measure relationships on the microsecond level?

2. Can we measure which market is leading? And which market is following?

 \rightarrow This paper is not about market manipulation

Data

	Corn Futures	Wheat Futures	Soybean Futures
CME Globex code	ZC	ZW	ZS
Data range	20	19/07/01 - 2020/0)7/01
Number of messages	758 Million	723 Million	1605 Million
Raw data	± 100 GB	± 100 GB	± 200 GB
In ROOT	5.3 GB	4.9 GB	9.9 GB

Event-Based Impact Profile – The Concept

Trigger

Idea:

Impact value

Measure the changes in a time series at fixed intervals before or after an event

Example:

What is the average price change in the Wheat market

50 ms after a price change in the Corn market

Event-Based Impact Profile – The Construction

- 1. Collect a set of triggers
 - \rightarrow Price changes in the Corn market (800 k)
- 2. For each trigger, extract a time series
 - \rightarrow 200ms before to 200ms after the trigger
- 3. Overlap these time series (align the triggers)
- 4. For each time delay, build a distribution

 \rightarrow 401 distributions, sequence of distributions

Event-Based Impact Profile – Diagram

Price change in Corn Futures Price change in Wheat Futures 1 ms (x-axis spanning 440 ms)

Price change in Corn Futures Price change in Wheat Futures 100 µs (x-axis spanning 44 ms)

Price change in Corn Futures Price change in Wheat Futures 10 µs (x-axis spanning 4.4 ms)

Price change in Corn Futures Price change in Wheat Futures 1 µs (x-axis spanning 0.44 ms)

Summary 1: Impact of Corn on Wheat

Summary

1. Price increase occurs in 2 parts

a. Instantaneously

b. Starting 0.5 milliseconds after

2. Asymmetric, price increase in Wheat follows price increase in Corn

Next question: What if we inverse the trigger and impact contract?

CÈRN

Price change in Wheat Futures Price change in Corn Futures 1 ms (x-axis spanning 440 ms)

Price change in Wheat Futures Price change in Corn Futures 100 µs (x-axis spanning 44 ms)

1 tick in Corn = 12.5 USD per contract (5000.0 BU)

Summary 2: Impact of Wheat on Corn

Summary

- 1. Price increase occurs in 2 parts
- 2. Asymmetric, price increase in Wheat follows price increase in Corn

Next question: How are relations between other markets?

Soybean follows Corn

Wheat follows Corn

Conclusion: Research question

Observations:

- 1. The market responds in 2 steps
- 2. Price changes in Wheat and Soybean follow Price changes in Corn

Price change in Corn Futures Price change in Wheat Futures 10 µs (x-axis spanning 4.4 ms)

Conclusion: The methodology

Advantages compared to an impact analysis using VAR models

- 1. No data fitting or user-chosen modelling parameters
- 2. Measure past and future time correlations
- 3. Linear computational cost and trivial multi-threading
- 4. Not limited by the complexity of the model

\rightarrow Interdisciplinary collaboration led to new techniques

Cern

How does HighLO contribute to ROOT?

Project 1: Interactive Dashboard to Explore High-Dimensional Histograms

How does HighLO Contribute to ROOT?

Project 2: RDataframe with Time Series Support

New Operations for RDataframe

Slides from PPP 118

RDataframe operations

- Define using lead and lag
- Persistent data objects
- Resample a time series

(differentiation)

(integration and more)

Proof of concept: https://github.com/philippe554/root

Lead and Lag

```
ROOT::RDataFrame rdf(50);
auto r = rdf
  .DefineSlotEntry("foo", [](unsigned int slot, ULong64_t entry){return static_cast<int>(entry);})
  .Define("bar", [](int foo){return foo * foo;}, {"foo"})
  .MovingCache<int, int>({"foo", "bar"})
  .Define("D", [](int bar1, int bar2){return bar2 - bar1;}, {"bar", "bar"}, {-1, 0})
  .Display({"foo", "bar", "D"});
```

r->Print();

Persistent Define

```
ROOT::RDataFrame rdf(10);
auto r = rdf
.DefineSlotEntry("foo", [](unsigned int slot, ULong64_t entry){return static_cast<int>(entry);})
.Define("D", [](){return gRandom->Exp(1);})
.DefinePersistent("time", [](double& time, double D){time += D;}, {"D"})
.DefinePersistent("state", [](std::string& state, int foo){state = state + std::to_string(foo);}, {"foo"})
.Display({"foo", "D", "time", "state"});
```

r->Print();

+				++
Row	foo	D	time	state
0	0	0.00025828445	0.00025828445	"0"
	1	1.8145581	1.8148164	"01"
2	2	1.2636598	3.0784762	"012"
3	3	0.054243873	3.1327201	"0123"
4	4	1.4624994	4.5952195	"01234"
5	5	0.72366079	5.3188803	"012345"

Resample a Time Series

Slides from PPP 118

```
ROOT::RDataFrame rdf(50);
auto r = rdf
  .DefineSlotEntry("foo", [](unsigned int slot, ULong64_t entry){return static_cast<int>(entry);})
  .Define("D", [](){return gRandom->Exp(1);})
  .DefinePersistent("time", [](double& time, double D){time += D;}, {"D"})
  .Resample<double, double, int>("time", 1, 5, 15, {"time", "foo"})
  .Display({"time", "foo"}, 10);
r->Print();
```


Resample a Time Series

Slides from PPP 118

+ <u>-</u> +		+
Row	time	foo
0	5.0000000	5
1	6.0000000	6
2	7.0000000	7
3	8.0000000	8
4	9.0000000	8
5	10.000000	9
6	11.000000	9
7	12.000000	9
8	13.000000	10
	14.000000	11

Discussion

