
Sebastian Brommer, Nils Faltermann, Olha Lavoryk, Moritz Molch, Artur Monsch, Ralf Schmieder, Nikita Shadskiy

The CROWN Framework
167th ROOT PPP Meeting

Sebastian Brommer - The CROWN Framework

CROWN NTuple Framework

› Convert CMS NanoAOD into analysis
NTuples

› Focus on efficient and fast processing with
minimal dependencies

› Automatic handling of systematics,
optimised disk usage of outputs

› Friend tree support

› Scaling via workflow tool and HTCondor
batch system

NanoAOD CROWN Histogram  
Framework

Sebastian Brommer - The CROWN Framework

Why analysis NTuples ?
In the last years, we found that splitting the analysis into two steps has some advantages

› NTuples can be used by multiple people, provided by one person

› Defined state of selection / corrections

› Most changes can be made on the level of the Histogram Framework

› Expensive calculation of high level variables can be done later

› Smaller file inputs for the histogram framework → faster runtime and faster
analysis turnarounds

NanoAOD CROWN Histogram  
Framework

Sebastian Brommer - The CROWN Framework

CROWN Usage

› Used by the KIT CMS Group since ~2 years

› O(10) analysis within CMS use CROWN

› Listed as “Supported Framework” by the CMS analysis tool group (link)

› 1065 commits and 204 pull requests by 13 Contributers

https://cms-analysis.docs.cern.ch/guidelines/frameworks/frameworks/

Core Principles and Basic
building blocks of CROWN

Sebastian Brommer - The CROWN Framework

C++ and Python
Core Principles

Configuration

Auto-generate code
With CROWN functions

User

Trigger Build Build crownlib

Trigger
code generation

Setup
Configuration

Compile
CROWN

Executable

CMS NanoAOD

Analysis NTuples

Sebastian Brommer - The CROWN Framework

C++ and Python

› Utilize python as a configuration
language to auto-generate C++ code

› Combine simple C++ functions into
one large RDataFrame

› Executables have simple interface

› Multiple executables for different
samples, and eras

› Focus on validation of user
configuration before the compilation

Core Principles

Configuration

Auto-generate code
With CROWN functions

User

Trigger Build Build crownlib

Trigger
code generation

Setup
Configuration

Compile
CROWN

Executable

CMS NanoAOD

Analysis NTuples

> ./config_ttbar_2018 outputfile.root /path/to/inputfiles/*.root

Sebastian Brommer - The CROWN Framework

Basic Building Blocks

› Quantity objects to track inputs and
outputs

› Producers to calculate new
quantities and Filters to filter events

› ProducerGroups to organise
Producers easier

Quantities and Producers

Sebastian Brommer - The CROWN Framework

› Identical base pattern for all
CROWN functions (df as first
argument, df as return object)

› Opt for simple & generic
functions

› No just-in-time compilation

› Designed to be shared among
different analyses

C++ Functions
Basic Building Blocks

Sebastian Brommer - The CROWN Framework

Basic Building Blocks
› The whole configuration is stored in

a python object

› Parameters are used to set cut
values, working points etc.

› Scopes for different final states, one
output file per scope

Python Configuration

Sebastian Brommer - The CROWN Framework

Basic Building Blocks

User defines all Producers to be run and all
Quantities to be added to the output

Gives CROWN complete knowledge

› on what to run

› on what to modify (see next slides)

› to validate the user config before compiling and
running

› to optimise configuration and producer ordering

› Minimize “magic” functions covering special
cases

Python Configuration

Code Generation

Sebastian Brommer - The CROWN Framework

› Based on configuration, C++
code is generated, one file per
defined producer

› Steering via cmake with
extensive report on things like
unused parameters, size of
RDataFrame etc.

› Code generation is fast (4-5 s for
a RDataFrame with 15k Defines)

› Compile times are reasonably
fast (2-3 min for a 15k Defines
RDataFrame with 20 cores)

Code Generation

setup build
> cmake ../ -DANALYSIS=tau -DCONFIG=config -DSAMPLES=ttbar
-DERAS=2018 -DSCOPES=mt,et,tt,em,ee,mm -DSHIFTS=All -DTHREADS=8
build with make
> make install -j 20
run CROWN executable
> ./config_ttbar_2018 outputfile.root /path/to/inputfiles/*.root

Configuration

Auto-generate code
With CROWN functions

User

Trigger Build Build crownlib

Trigger
code generation

Setup
Configuration

Compile
CROWN

Executable

CMS NanoAOD

Analysis NTuples

Sebastian Brommer - The CROWN Framework

Code Generation

├── config_ttbar_2018.cxx
├── include
│ ├── ee
│ ├── em
│ ├── et
│ ├── global
│ │ ├── [%%...]
│ │ ├── MetBasics.hxx
│ ├── mm
│ ├── mt
│ └── tt
└── src
 ├── ee
 ├── em
 ├── et
 ├── global
 │ ├── [%%...]
 │ ├── MetBasics.cxx
 ├── mm
 ├── mt
 └── tt

ROOT%::RDF%::RNode MetBasics_global (ROOT%::RDF%::RNode df0, OnnxSessionManager &onnxSessionManager,
CorrectionManager &correctionManager) {
 […]
 auto df2 = lorentzvectors%::buildMet(df1, "PuppiMET_pt", "PuppiMET_phi", "met_p4");

auto df3 = lorentzvectors%::buildMet(df2, "PuppiMET_ptUnclusteredDown", "PuppiMET_phiUnclusteredDown",
“met_p4%__metUnclusteredEnDown");
auto df4 = lorentzvectors%::buildMet(df3, "PuppiMET_ptUnclusteredUp", "PuppiMET_phiUnclusteredUp",
"met_p4%__metUnclusteredEnUp");

 auto df5 = quantities%::pt(df4, "met_uncorrected", "met_p4");
 auto df6 = quantities%::pt(df5, "met_uncorrected%__metUnclusteredEnDown", "met_p4%__metUnclusteredEnDown");
 auto df7 = quantities%::pt(df6, "met_uncorrected%__metUnclusteredEnUp", “met_p4%__metUnclusteredEnUp");
 […]
 return df19;
}

%// [%%...]
#include “[…]/include/global/MetBasics.hxx”
%// [%%...]
auto df13_global = MetBasics_global(df12_global, onnxSessionManager, correctionManager);
%// [%%...]

Folder Structure Main File

Auto-generated function calls

Repo containing a complete version of
CROWNs autogenerated code (link)

https://github.com/harrypuuter/crown_example_code/tree/main

Advanced Features

Sebastian Brommer - The CROWN Framework

Advanced Building Blocks

› Rules are used to modify the
configuration for different types of
samples (e.g. sample-specific corrections)

› Modifiers to change parameters based
on samples or eras

› Systematic Shifts are support for
different types of shifts:

• Different Producers

• Different configuration parameters

• Different input quantities

Python Configuration

Sebastian Brommer - The CROWN Framework

Advanced Building Blocks

› Shifts are propagated through
the whole configuration

› All producers affected by a shift
automatically also produce
shifted quantities

› Shifted quantities added to
output and identified via 
 
<quantity_name>__<shift_name>

Python Configuration

Sebastian Brommer - The CROWN Framework

› Support for the production of FriendTrees (requires a CROWN NTuple as input)
including a continuation of automatic systematics tracking

› Support for the production of FriendTrees with multiple input trees (aka a
CROWN NTuple and some FriendTrees)

› Support for CMS correctionlib the standard tool in CMS standard for
providing corrections

› Support for onnxRuntime for ML inference

› CROWN builds contain all information to get the exact config and code that
was used (e.g. to investigate mistakes in NTuples)

Additional Features

Performance

Sebastian Brommer - The CROWN Framework

Performance Dataframe 15.8k Defines // 8 Threads // ROOT 6.30
Input 14,289,000 Events // 28 GB
Output 6 Final States // 20 GB

Processing 5600 Events/s into 6 final states including all systematics
required for analysis

Reading files via xrootdCopying and processing local files

Re
al

 M
em

or
y

(M
B)

Re
al

 M
em

or
y

(M
B)

Sebastian Brommer - The CROWN Framework

Performance Dataframe 15.8k Defines // 8 Threads
Input 14,289,000 Events // 28 GB
Output 6 Final States // 20 GB

Current ROOT master significantly lowers the memory footprint (by about
30% in this example), while reducing the runtime by 10-15%

With recent master changes

Sebastian Brommer - The CROWN Framework

Performance Dataframe 15.8k Defines // 8 Threads
Input 14,289,000 Events // 28 GB
Output 6 Final States // 20 GB

New feature from yesterday (PR) significantly reduces setup time since
corrections are only loaded ones and shared between functions, plus
reduced memory usage

CorrectionManager

https://github.com/KIT-CMS/CROWN/pull/267

Workflow Management

Sebastian Brommer - The CROWN Framework

Workflow Management
Production for Analysis

Sebastian Brommer - The CROWN Framework

Kingmaker

› To orchestrate CROWN, we use
KingMaker, a law + Luigi workflow

› Organise samples with a sample database
tool (link)

› Kingmaker takes care of building all
required tarballs, submitting jobs to
HTCondor, writing outputs to grid storage

› Allows for a turnaround cycle of < 1 day
for large scale analyses (more than 100M
events per era)

Workflow management

law run ProduceSamples --analysis tau --config config --sample-list
samples_18.txt —production-tag 2018_ntuples_v10 --workers 100 --scopes
mt,et,tt --shifts all

Workflow management

https://github.com/KIT-CMS/KingMaker_sample_database

Sebastian Brommer - The CROWN Framework

Kingmaker

› Minimizes build times by reusing
crownlib containing all CROWN C++
functions

› Supports FriendTree production, keeping
track of all required inputs / outputs

› Friends are always run single-core with
one input file per job to maintain the
correct structure

Workflow management

law run ProduceSamples --analysis tau --config config --sample-list
samples_18.txt —production-tag 2018_ntuples_v10 --workers 100 --scopes
mt,et,tt --shifts all

law run ProduceFriends %--analysis tau %--config config %--friend-config
fastmtt —sample-list samples18.txt —shifts all %--friend-name
fastmtt_friends_v3 %--production-tag 2018_ntuples_v10 %--scopes mt,et,tt
%--workers 100

Sebastian Brommer - The CROWN Framework

Conclusion

› CROWN is the main NTuple framework for
multiple analysis within CMS

› Law-based workflow manangement tool to
run large-scale productions on a batch
system

› Focused on performance and efficiency

› CROWN directly profits from all
RDataFrame improvements

CROWN: https://github.com/KIT-CMS/CROWN
KingMaker: https://github.com/KIT-CMS/KingMaker
Documentation: https://crown.readthedocs.io/en/latest/index.html

https://github.com/KIT-CMS/CROWN
https://github.com/KIT-CMS/KingMaker
https://crown.readthedocs.io/en/latest/index.html

Questions ?

Sebastian Brommer - The CROWN Framework

› Currently, the snapshot is the only fitted part of CROWN

› In principle, CROWN would be able to also track datatypes of quantities
consistently and provide this information

› C++ templating is limiting factor in this case, compile times explode and even
crashes for very large templates

Jitting for Snapshots

Info in <[ROOT.RDF] Info /build/jenkins/workspace/lcg_release_pipeline/build/projects/ROOT-6.30.02/src/ROOT/
6.30.02/tree/dataframe/src/RLoopManager.cxx:803 in void ROOT::Detail::RDF::RLoop
Manager::Jit()>: Just-in-time compilation phase completed in 114.279227 seconds.

