The African School of Fundamental Physics and Applications

Dave Biersach Brookhaven National
Laboratory dbiersach@bnl.gov

Session 02
Calculus and Monte Carlo Methods

Brookhaven
National Laboratory

Session 02 - Topics

- Understand the principles behind the Monte Carlo method
- Compare the accuracy when estimating the area of a 2-D unit circle using two different sampling methods
- Fixed sampling across a uniform grid of points
- Variable sampling using a set of random points
- Appreciate the impact of minimizing discrepancies when using Monte Carlo estimation techniques
- Pseudo-random number generator (PRNG) - Permuted Congruential Generator
- Quasi-random number generator (QRNG) - Halton Sequence

Session 02 - Topics

- Use the Monte Carlo method to estimate the volume of a three-dimensional unit sphere using a QRNG
- Use the Monte Carlo method to estimate the content of an n-ball in dimensions from 1 to 12
- Use the Monte Carlo method to estimate the probability that a random variable selected from a Gaussian Standard Normal distribution will fall within one standard deviation away from its mean

An Interesting Question

- What is the volume of a fourdimensional unit hypersphere?
- What does a 4D sphere "look" like?
- What is a "unit" sphere?
- Where do I even start?

- Break down complex questions into simpler steps:
- How can we calculate the area of a 2D circle?
- How can we calculate the volume of a 3D sphere?
- How do we move from 3D to 4D?

Area and Volume

A Unit Circle and Unit Sphere

2-D Area \rightarrow 3-D Volume

$$
\begin{aligned}
& \text { Volume of the disk: } \\
& \pi r^{2} \cdot d x=\pi\left(R^{2}-x^{2}\right) \cdot d x
\end{aligned}
$$

A 4-D Hypersphere

Area as a "Ratio" of Inside vs. Total Dots

The equation of a circle centered at the origin

$$
x^{2}+y^{2}=r^{2}
$$

The Monte Carlo Method

The Monte Carlo Method

- With Monte Carlo, we randomly sample points within a bounded space and count how many are inside the curve
- The ratio of inside dots (those under the curve) vs. total dots leads to an estimate of the integral
- Monte Carlo is non-deterministic when a random number generator is used to create the sample points

The Monte Carlo Method

The Monte Carlo Method

$$
\begin{aligned}
\frac{\text { dots }_{\text {inside }}}{\text { dots }_{\text {total }}} & =\frac{\text { area circle }^{\text {Wrean't know }}}{\text { this area }} \\
\text { areale }_{\text {sample }} & =\text { base } \times \text { height } \\
& =2 \times 2 \\
& =4
\end{aligned}
$$

$$
\operatorname{area}_{\text {circle }}=4 \times \frac{\operatorname{dots}_{\text {inside }}}{\operatorname{dots}_{\text {total }}}
$$

Run mc_circle_prng.ipynb - Cells 1... 3

```
Import needed packages/modules
[1] # Cell 1
    import matplotlib.pyplot as plt
    import numpy as np
```



```
Set the total number of random dots (samples) to take
[2] # Cell 2
    total_dots = 320 * 320 # 102_400
    print(f"{total_dots = :,}")
Э total_dots = 102,400
Set the numpy PRNG seed to 2020 and take n random samples of 2D Cartesian points (x,y)
    1. Use the built-in Python uniform distribution which returns a random float [0,1)
```


2. Subtract that float from 1 , so the interval flips to $(0,1]$ ensuring any points on the perimeter will now contribute to the area
3. Scale the result so it now falls in the interval $[-1,1]$
[3] \# Cell 3
rng $=$ np.random.default_rng(seed=2020)
$x=(1-r n g$. random(total_dots)) * $2-1$
y = (1 - rng.random(total_dots)) * 2 - 1

```

```

print(x)
print(y)
买 [$0.06338491-0.02868446-0.72797656 \ldots$. $0.98667256-0.12884392$ 0.59351843]
$\left[\begin{array}{lllllll}-0.16326076 & 0.21528812 & -0.70365621 & \ldots & -0.38432811 & -0.83694384\end{array}\right.$ 0.52029149]

```

\section*{Run mc_circle_prng.ipynb - Cells 4...5}
```

Create an array d that contains the distance from the origin (0,0) for every point (x,y)
Leverage the fact the exponentiation and addition operators are "vector aware"

```

```

[4] \# Cell 4
d= x**2 + y**2
print(d)
\Psi`[0.03067172 0.04717177 1.02508193 ... 1.12123084 0.71707575 0.62296737](3)

```

Create arrays of \((x, y)\) coordinates that are "on or inside" vs. "outside" the circle using the Pythagorean distance \(d\) Leverage the ability to filter numpy arrays using a conditional expression

```

[5] \# Cell 5
x_in = x[d <= 1.0] \# On or inside the circle \longleftarrow_ (5)
y_in = y[d <= 1.0]
x_out = x[d > 1.0] \# Outside the circle
(6
y_out = y[d > 1.0]

```

\section*{Run mc_circle_prng.ipynb - Cells 6... 7}
```

Calculate the absolute percent error in the area estimation
1. The actual/expected area of a unit circle is exactly }
\longleftarrow
2. The observed/estimated area using the Monte Carlo formulation = 4
[6] \# Cell 6
act = np.pi
est = 4 * np.count_nonzero(d <= 1.0) / total_dots
err = np.abs((est - act) / act) < < (4)
print(f"dots = {total_dots:,}")
print(f"act = {act:.6f}")
print(f"est = {est:.6f}")
print(f"err = {err:.5%}")
Э dots = 102,400
act = 3.141593
est = 3.144492
err = 0.09230%
Display the scatter plot of the Monte Carlo estimation
[7] \# Cell 7
plt.scatter(x_in, y_in, color="red", marker=".", s=0.5)
plt.scatter(x_out, y_out, color="blue", marker=".", s=0.5)
plt.gcf().set_size_inches(10, 10)
plt.gca().set_aspect("equal")
plt.show()

```

\section*{Check mc_circle_prng.ipynb - Cell 7}


\section*{Run mc_circle_grid.ipynb - Cells 1... 2}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
Set the number of grid intervals along each side (x and y) of the sample area

```
```

[2] \# Cell 2

```
[2] # Cell 2
    side_dots = 320
    side_dots = 320
    total_dots = side_dots**2
    total_dots = side_dots**2
    print(f"{total_dots = :,}")
    print(f"{total_dots = :,}")
\Psi total_dots = 102,400
\Psi total_dots = 102,400
                                (3)
```

 (3)
    ```

\section*{Run mc_circle_grid.ipynb - Cell 3}


\section*{Run mc_circle_grid.ipynb - Cells 4...5}
```

Create an array d}\mathrm{ that contains the distance from the origin (0,0) for every point (x,y)
Leverage the fact the exponentiation and addition operators are "vector aware"
[4] \# Cell 4 < (1)
d = x**2 + y**2
print(d)
马゙ [2. 1.98750012 1.97507886 ···. 1.97507886 1.98750012 2. [ll

```

Create arrays of \((x, y)\) coordinates that are "on or inside" vs. "outside" the circle using the Pythagorean distance \(d\) Leverage the ability to filter numpy arrays using a conditional expression
```

[6] \# Cell 5
x_in = x[d<= 1.0] \# On or inside the circle
y_in = y[d <= 1.0]
x_out = x[d > 1.0] \# Outside the circle
y_out = y[d > 1.0]

```

\section*{Run mc_circle_grid.ipynb - Cells 6... 7}
```

Calculate the absolute percent error in the area estimation
1. The actual/expected area of a unit circle is exactly }
2. The observed/estimated area using the uniform grid method }=4\times\frac{dots}{\mp@subsup{\mathrm{ inside }}{\mathrm{ m }}{}
[7] \# Cell 6
act = np.pi
est = 4 * np.count_nonzero(d <= 1.0) / total_dots
err = np.abs((est - act) / act)
print(f"dots = {total_dots:,}")
print(f"act = {act:.6f}")
print(f"est = {est:.6f}")
print(f"err = {err:.5%}")
\Psi dots = 102,400
act = 3.141593
est = 3.121094
err = 0.65250%
Display the scatter plot of the Monte Carlo estimation
[8] \# Cell 7
plt.scatter(x_in, y_in, color="red", marker=".", s=0.5)
plt.scatter(x_out, y_out, color="blue", marker=".", s=0.5)
plt.gcf().set_size_inches(10, 10)
plt.gca().set_aspect("equal")
plt.show()

```

\section*{Check mc_circle_grid.ipynb}



Taking random samples was \(\mathbf{6 0 7 \%}\) more accurate than using a uniform mesh!

\section*{Monte Carlo Questions}
- The random Monte Carlo approach and the version based upon taking uniformly spaced samples along a Cartesian (orthogonal) grid used the same number of samples
- The MC approach resulted in \(607 \%\) reduction in relative error compared to the simple grid method - why?
- What is the underlying issue that can force a uniformly spaced sampling approach to miscount the dots inside vs. outside the circle?
- Consider an individual mesh square that overlaps the perimeter of the circle - how does the rigid placement of the corners of each square affect the accuracy of the estimate of the curve?

\title{
Comparing "Random" Number Generators
}

A quasi-random number generator

\section*{Standard PRNG}


\section*{Halton QRNG}


\section*{The Halton Sequence}


\section*{Run mc_circle_halton.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
from numba import int64, float64, vectorize
Declare a numba accelerated function that computes the Halton QRNG

1. The parameter n is an integer of any size
2 . The parameter p is a prime number
```

```

[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)
def halton(n, p):
$h, f=0,1$
while $n>0$:
$f=f / p$
$h+=(n \% p){ }^{*} f$
$\mathrm{n}=\operatorname{int}(\mathrm{n} / \mathrm{p})$
return h
Set the number of random dots (samples) to take
[3] \# Cell 3
total_dots $=25 _600$
(4)

```

\section*{Run mc_circle_halton.ipynb - Cells 4... 5}
```

Take n "random" samples of 2D Cartesian points (x,y) using the Halton sequence
< (1)
1. The Halton QRNG returns a random float [0,1)
2. Subtract that float from 1, so the interval flips to (0,1] ensuring any points on the perimeter will now contribute to the area
3. Scale the result so it now falls in the interval [-1, 1]
[4] \# Cell 4
x = (1 - halton(np.arange(total_dots), 2)) * 2-1
y = (1 - halton(np.arange(total_dots), 3)) * 2-1
print(x)
print(y)

```

```

Create an array d}\mathrm{ that contains the distance from the origin (0,0) for every point (x,y)
Leverage the fact the exponentiation and addition operators are "vector aware"

```

```

[5] \# Cell 5
d = x**2 + y**2
print(d)
Э7 [2. 0.111111111 0.36111111 [. 0.35232346 0.11836411 1.58486685]
(6)

```

\section*{Run mc_circle_halton.ipynb - Cells 6... 7}
```

Create arrays of (x,y) coordinates that are "on or inside" vs. "outside" the circle using the Pythagorean distance d
Leverage the ability to filter numpy arrays using a conditional expression
[6] \# Cell 6
x_in = x[d <= 1.0] \# On or inside the circle
y_in = y[d<= 1.0]
(1)
y_out = y[d > 1.0]
Calculate the absolute percent error in the area estimation

1. The actual/expected area of a unit circle is exactly π
2. The observed/estimated area using the Monte Carlo formulation $=4 \times \frac{\text { dots }_{\text {inside }}}{d o t s_{\text {total }}}$
[7] \# Cell 7
act $=n p$. pi
est $=4$ * np.count_nonzero(d <= 1.0) / total_dots
```

```

err $=n p . a b s((e s t-a c t) / a c t)$
print(f"dots = \{total_dots:,\}")
print(f"act = \{act:.6f\}")
print(f"est = \{est:.6f\}")
print(f"err $=\{$ err:.5\%\}")
买 dots $=25,600$
act $=3.141593$
est $=3.141406$
err $=0.00593 \%$

```

\section*{Check mc_circle_halton.ipynb - Cell 8}



The Halton QRNG MC was \(\mathbf{1 , 4 5 6 \%}\) more accurate than the PRNG MC while needing \(\mathbf{3 0 0 \%}\) fewer samples!

\section*{Moving to Higher Dimensions}

The Pythagorean Distance is a metric that is true in all orthogonal spaces of any dimension

\[
c^{2}=x^{2}+y^{2} \quad s^{2}=c^{2}+z^{2}
\]
\[
\therefore s^{2}=x^{2}+y^{2}+z^{2}
\]

\section*{Run mc_sphere.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
from numba import float64, int64, vectorize
Declare a numba accelerated function that computes the Halton QRNG
1. The parameter }n\mathrm{ is an integer of any size
2. The parameter p}\mathrm{ is a prime number
[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)
def halton(n, p):
h, f}=0,
while n > 0:
f=f/p
h += (n % p) * f
n = int(n / p)
return h

```

Set the total number of dots (samples) to take
[3] \# Cell 3
total_dots \(=125 \_000\)

\section*{Run mc_sphere.ipynb - Cells 4... 6}
```

Create total_dots samples of 3D Cartesian points (x,y,z) using the Halton sequence
1. The Halton QRNG returns a random float [0,1)
2. Subtract that float from 1, so the interval flips to (0,1] ensuring any points on the perimeter will now contribute to the volume
3. Scale the result so it now falls in the interval [-1, 1]
[4] \# Cell 4
x = (1 - halton(np.arange(total_dots), 2)) * 2 - 1
y = (1 - halton(np.arange(total_dots), 3)) * 2 - 1
z = (1 - halton(np.arange(total_dots), 5)) * 2 - 1
Create an array d}\mathrm{ that contains the distance from the origin (0,0) for every point (x,y,z)
Leverage the fact the exponentiation and addition operators are "vector aware"
[5] \# Cell 5
d = x**2 + y**2 + z**2
Create arrays of (x,y) coordinates that are "on or inside" vs. "outside" the sphere using the Pythagorean distance d
Leverage the ability to filter numpy arrays using a conditional expression
[6] \# Cell 6
\# On the surface (or inside) the sphere
x_in = x[d<= 1.0]
y_in = y[d<= 1.0]
z_in = z[d <= 1.0]
(3)
\# Outside the sphere
x_out = x[d > 1.0]
y_out = y[d > 1.0]
z_out = z[d > 1.0]

```

\section*{Run mc_sphere.ipynb - Cells 7... 8}
```

Calculate the absolute percent error in the area estimation
1. The actual/expected volume of a unit sphere is exactly }\frac{4}{3}
2. The observed/estimated volume using the Monte Carlo formulation = 8}\times\frac{\mp@subsup{dots}{\mathrm{ inside }}{}}{\mp@subsup{dots}{\mathrm{ total }}{}
[7] \# Cell 7
act = 4/ 3 * np.pi
est = 8 * np.count_nonzero(d <= 1.0) / total_dots
err = np.abs((est - act) / act)
print(f"dots = {total_dots:,}")
print(f"act = {act:.6f}")
print(f"est = {est:.6f}")
print(f"err = {err:.5%}")
\Psi dots = 125,000
act = 4.188790
est = 4.188416
err = 0.00893%
Display the scatter plot of the Monte Carlo estimation
[8] \# Cell 8
ax = plt.axes(projection="3d")
ax.view_init(azim=-72, elev=48)
ax.scatter(x_in, y_in, z_in, color="red", marker=".", s=0.1)
ax.scatter(x_out, y_out, z_out, color="blue", marker=".", s=0.1)
plt.gcf().set_size_inches(10, 10)
plt.gca().set_aspect("equal")
plt.show()

```

\section*{Check mc_sphere.ipynb}


We just estimated the volume of a unit sphere to within \(0.009 \%\) without a stitch of calculus and using nothing but random numbers!
\begin{tabular}{|ll|}
\hline Total dots & \(=125,000\) \\
Act. Volume & \(=4.188790\) \\
PRNG Est. Volume & \(=4.195392\) \\
PRNG \% Rel Err & \(=0.157606 \%\) \\
& \\
Total dots & \(=125,000\) \\
\hline Act. Volume & \(=4.188790\) \\
QRNG Est. Volume & \(=4.188416\) \\
\hline QRNG \% Rel Err & \(=-0.008933 \%\) \\
\hline
\end{tabular}

QRNG is \(1,664 \%\) more accurate than the PRNG

\section*{Run mc_hypersphere.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
from numba import int64, float64, vectorize(1)

```

Declare a numba accelerated function that computes the Halton QRNG
1. The parameter \(n\) is an integer of any size
2. The parameter \(p\) is a prime number
[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)

(2)
    def halton( \(n, p)\) :
        \(h, f=0,1\)
        while \(n>0\) :
            \(f=f / p\)
            \(\mathrm{h}+=(\mathrm{n} \% \mathrm{p}) * \mathrm{f}\)
            \(\mathrm{n}=\operatorname{int}(\mathrm{n} / \mathrm{p})\)
        return \(h\)

Set the total number of samples to take
[3] \# Cell 3
total_dots \(=6\) _250_000

\section*{Run mc_hypersphere.ipynb - Cells 4... 5}
```

Create total_dots samples of 4D Cartesian points (x,y,z,w) using the Halton sequence
1. The Halton QRNG returns a random float [0,1)
2. Subtract that float from 1, so the interval flips to (0,1] ensuring any points on the perimeter will now contribute to the "content"
3. Scale the result so it now falls in the interval [-1, 1]
[4] \# Cell 4
x = (1 - halton(np.arange(total_dots), 2)) * 2 - 1
y = (1 - halton(np.arange(total_dots), 3))* 2 - 1
z = (1 - halton(np.arange(total_dots), 5)) * 2 - 1
w = (1 - halton(np.arange(total_dots), 7)) * 2 - 1
(1)
Create an array d that contains the distance from the origin $(0,0,0,0)$ for every point (x, y, z, w) Leverage the fact the exponentiation and addition operators are "vector aware"
[5] \# Cell 5
$d=x^{* * 2}+y^{* * 2}+z^{* * 2}+w^{* *} 2$ \square

```

\section*{Run mc_hypersphere.ipynb - Cell 6}
```

Calculate the absolute percent error in the content estimation
1. The actual/expected content of a unit hypersphere is exactly }\frac{\mp@subsup{\pi}{}{2}}{2

```

```

[6] \# Cell 7
act = np.pi**2 / 2
est = 16 * np.count_nonzero(d <= 1.0) / total_dots
err = np.abs((est - act) / act)
print(f"dots = {total_dots:,}")
print(f"act = {act:.6f}")
print(f"est = {est:.6f}")
print(f"err = {err:.5%}")
\Psi dots = 6,250,000
act = 4.934802
est = 4.934543
err = 0.00525%

```

\section*{An Interesting Question}

What is the volume of a 4-D unit hypersphere?

Act. Volume \(=4.934802\)
Est. Volume \(=4.934543\)
\% Rel Err \(=-0.005245 \%\)
\[
=\frac{\pi^{2}}{2}
\]

> Yes, we can calculate the volume of something we can not even imagine!

\section*{A Recurrence Relation}

The content of an \(\boldsymbol{n}\)-ball is proportional to the unit ball for that dimension
\[
V_{n}(R)=V_{n}(1) R^{n}
\]


We can compute \(V_{n}(1)\) by integrating the \(\boldsymbol{n} \mathbf{- 2}\) ball over a unit disk using polar coordinates
\[
\begin{aligned}
V_{n}(1) & =\int_{0}^{1} \int_{0}^{2 \pi} V_{n-2}(1)\left(\sqrt{1-r^{2}}\right)^{n-2} r d \theta d r \\
& =\left.V_{n-2}(1) \int_{0}^{1} r\left(1-r^{2}\right)^{\frac{n-2}{2}} \theta\right|_{0} ^{2 \pi} d r \\
& =2 \pi V_{n-2}(1) \int_{0}^{1} r\left(1-r^{2}\right)^{\frac{n-2}{2}} d r
\end{aligned}
\]
\[
V_{n}(1)=\frac{2 \pi}{n} V_{n-2}(1)
\]

\section*{A Recurrence Relation}
\begin{tabular}{|c|c|c|}
\hline & \[
V_{n}(1)=\frac{2 \pi}{n} V_{n-2}(1)
\] & \(V_{n}(R)=V_{n}(1) R^{n}\) \\
\hline By definition & \(V_{o}(1)=1\) & \(V_{o}(R)=1\) \\
\hline \multirow[t]{4}{*}{\(1-(-1)=2\)} & \(V_{1}(1)=2\) & \(V_{1}(R)=2 R\) \\
\hline & \[
V_{2}(1)=\frac{2 \pi}{2} \sqrt{1}
\] & \(V_{2}(R)=\pi R^{2}\) \\
\hline & \[
V_{3}(1)=\frac{2 \pi}{3}-\frac{4}{3} \pi
\] & \(V_{3}(R)=\frac{4}{3} \pi R^{3}\) \\
\hline & \[
V_{4}(1)=\frac{2 \pi}{4}(\pi)=\frac{\pi^{2}}{2}
\] & \(V_{4}(R)=\frac{\pi^{2}}{2} R^{4}\) \\
\hline
\end{tabular}

\section*{Volume via the Gamma Function}
\[
\begin{aligned}
& V_{n}(R)=\frac{\pi^{\frac{n}{2}} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)} \quad \begin{array}{c}
\Gamma(n)=(n-1)! \\
n!=\Gamma(n+1)
\end{array} \quad V_{0}(R)=\frac{\pi^{\frac{0}{2}} R^{0}}{\Gamma\left(\frac{0}{2}+1\right)}=\frac{1}{(1-1)!}=1 \\
& V_{2}(R)=\frac{\pi R^{2}}{\Gamma\left(\frac{2}{2}+1\right)}=\frac{\pi R^{2}}{\Gamma(2)}=\frac{\pi R^{2}}{(2-1)!}=\pi R^{2} \\
& V_{3}(R)=\frac{\pi^{\frac{3}{2}} R^{3}}{\Gamma\left(\frac{3}{2}+1\right)}=\frac{\pi R^{3}}{\Gamma\left(\frac{5}{3}\right)}=\frac{\pi^{\frac{3}{2}} R^{3}}{\left(\frac{3 \sqrt{\pi}}{4}\right)}=\pi^{\frac{3}{2} R^{3}\left(\frac{4}{3 \sqrt{\pi}}\right)=\frac{4}{3} \pi R^{3}} \\
& V_{4}(R)=\frac{\pi^{\frac{4}{2}} R^{4}}{\Gamma\left(\frac{4}{2}+1\right)}=\frac{\pi^{2} R^{2}}{\Gamma(3)}=\frac{\pi^{2} R^{2}}{(3-1)!}=\frac{\pi^{2} R^{4}}{2}
\end{aligned}
\]

\section*{Volume via the Gamma Function}
\[
V_{n}(R)=\frac{\pi^{\frac{n}{2}} R^{n}}{\Gamma\left(\frac{n}{2}+1\right)}
\]

Because we can evaluate \(\boldsymbol{\Gamma} \boldsymbol{( x )}\) at every point in \(\mathbb{R}\) we can now determine the volume of a unit hypersphere in any dimension
\[
V_{7.89}(5.12)=\frac{\pi^{\frac{7.89}{2}} 5.12^{7.89}}{\Gamma\left(\frac{7.89}{2}+1\right)}=1,633,106.2809
\]

As the Gamma function can extends its domain to include \(\boldsymbol{n} \in \mathbb{R}\), we can use this analytic solution to compute the volume of hyperspheres having fractional (non-integer) dimensions!

\section*{Run mc_high_dimensions.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
import sympy
from matplotlib.ticker import AutoMinorLocator, MultipleLocator
from numba import float64, int64, vectorize
from scipy.signal import find_peaks
Declare a numba accelerated function that computes the Halton QRNG
1. The parameter }\boldsymbol{n}\mathrm{ is an integer of any size
2. The parameter }p\mathrm{ is a prime number
[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)
def halton(n, p):
h, f=0,1
while n > 0:
f = f / p
h += (n % p) * f
n = int(n / p)
return h
Set the total number of samples to take
[3] \# Cell 3
total_dots = 6_250_000
(3)

```

\section*{Run mc_high_dimensions.ipynb - Cell 4}

Estimate the content of n -balls from dimension 1 to 13
1. Use sympy to provide the Halton generator the correct prime number for each successive dimension
2. We only need to keep a single accumulating \(d\) value to represent the distance to origin for a point as we add for each dimension
3. The Monte Carlo sample space multiplier grows by \(2^{\text {dimension }}\)

[4] \# Cell 4
dimensions \(=13\)
\(\mathrm{d}=\mathrm{np}\). zeros(total_dots)
est \(=\) np.zeros(dimensions)
est[0] \(=1\) \# By definition
\(\operatorname{est}[1]=2\) \# The 1-D line in the interval [-1,1] has "area" (length) 2

for dim in np.arange(1, dimensions): (3) print(f"Calculating the volume of a unit \(\{\) dim:>2\}-ball . . .") \(\mathrm{v}=\) halton(np.arange(total_dots), sympy.prime(dim)) * 2-1 d \(+=\mathrm{v}^{* * 2}\) est[dim] \(=2^{* *}\) dim \(*\) np.count_nonzero \((d<=1.0) /\) total_dots 4 (5)

TV Calculating the volume of a unit 1-ball . . .
Calculating the volume of a unit 2-ball . . .
Calculating the volume of a unit 3 -ball . . .
Calculating the volume of a unit 4-ball . . .
Calculating the volume of a unit 5-ball . . .
Calculating the volume of a unit 6-ball . . .
Calculating the volume of a unit 7-ball . . .
Calculating the volume of a unit 8-ball . . .
Calculating the volume of a unit 9-ball . . .
Calculating the volume of a unit 10 -ball
Calculating the volume of a unit 11-ball
Calculating the volume of a unit 12-ball . . .

\section*{Run mc_high_dimensions.ipynb - Cell 5}
```

Using the analytic solution, calculate the dimension and content for the largest unit n-ball
V
[5] \# Cell 5
act_x = np.linspace(0, dimensions - 1, 1000)
act_y = np.power(np.pi, act_x / 2) / gamma(act_x / 2 + 1)
(3)
m = find_peaks(act_y)[0][0] ఒ (4)
print(f"max dim = {act_x[m]:.6f}")
print(f"max vol = {act_y[m]:.6f}")
\Psi max dim = 5.261261
max vol = 5.277764

```

\section*{Run mc_high_dimensions.ipynb - Cell 6}
```

Plot the estimated and actual n-ball content vs. dimension
[6] \# Cell 6
plt.figure(figsize=(12, 8))
plt.plot(np.arange(dimensions), est, color="blue", label="Estimated")
plt.plot(act_x, act_y, color="red", label="Actual") < < (2)
plt.scatter(act_x[m], act_y[m], marker="o", color="green")
plt.vlines(act_x[m], 0, act_y[m], color="green")
plt.title("Volume of n-Dimensional Hyperspheres")
plt.xlabel("Dimension")
plt.ylabel("Volume")
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))
ax.xaxis.set_minor_locator(MultipleLocator(0.5))
ax.yaxis.set_minor_locator(AutoMinorLocator())
ax.legend(loc="upper right")

```

```

ax.grid("on")
plt.show()

```

\section*{Monte Carlo Estimation of n-Ball Content}

What lurks beyond the \(4^{\text {th }}\) dimension?
```

Calculating the volume of a unit 1-ball . . .
Calculating the volume of a unit 2-ball . . .
Calculating the volume of a unit 3-ball . . .
Calculating the volume of a unit 4-ball . . .
Calculating the volume of a unit 5-ball . . .
Calculating the volume of a unit 6-ball . . .
Calculating the volume of a unit 7-ball . . .
Calculating the volume of a unit 8-ball . . .
Calculating the volume of a unit 9-ball . . .
Calculating the volume of a unit 10-ball . . .
Calculating the volume of a unit 11-ball . . .
Calculating the volume of a unit 12-ball. . .

```

\section*{Monte Carlo Estimation of n-Ball Content}

What lurks beyond the \(4^{\text {th }}\) dimension?


\section*{The Power Of Monte Carlo Integration}
\[
\begin{aligned}
& \mathbf{F}^{(n)}=\frac{\mu}{8 \pi} \int_{r_{1}}^{r_{2}} \int_{s_{1}}^{s_{2}} \int_{y_{1}}^{y_{2}}\left(\frac{2}{R_{a}^{3}}+\frac{3 a^{2}}{R_{a}^{5}}\right)\{(\mathbf{R} \times \mathbf{b})(\mathbf{t} \cdot \mathbf{n})+\mathbf{t}[(\mathbf{R} \times \mathbf{b}) \cdot \mathbf{n}]\} \\
& \quad \times\left(\frac{r-r_{1}}{r_{2}-r_{1}} \frac{s-s_{1}}{s_{2}-s_{1}}\right) \mathrm{d} s \mathrm{~d} r \mathrm{~d} y \\
& -\frac{\mu}{4 \pi(1-v)} \int_{r_{1}}^{r_{2}} \int_{s_{1}}^{s_{2}} \int_{y_{1}}^{y_{2}}\left(\frac{1}{R_{a}^{3}}+\frac{3 a^{2}}{R_{a}^{5}}\right)[(\mathbf{R} \times \mathbf{b}) \cdot \mathbf{t}] \mathbf{n}\left(\frac{r-r_{1}}{r_{2}-r_{1}} \frac{s-s_{1}}{s_{2}-s_{1}}\right) \mathrm{d} s \mathrm{~d} r \mathrm{~d} y \\
& +\frac{\mu}{4 \pi(1-v)} \int_{r_{1}}^{r_{2}} \int_{s_{1}}^{s_{2}} \int_{y_{1}}^{y_{2}} \frac{1}{R_{a}^{3}}\{(\mathbf{b} \times \mathbf{t})(\mathbf{R} \cdot \mathbf{n})+\mathbf{R}[(\mathbf{b} \times \mathbf{t}) \cdot \mathbf{n}]\}\left(\frac{r-r_{1}}{r_{2}-r_{1}} \frac{s-s_{1}}{s_{2}-s_{1}}\right) \mathrm{d} s \mathrm{~d} r \mathrm{~d} y \\
& -\frac{\mu}{4 \pi(1-v)} \int_{r_{1}}^{r_{2}} \int_{s_{1}}^{s_{2}} \int_{y_{1}}^{y_{2}} \frac{3}{R_{a}^{5}}[(\mathbf{R} \times \mathbf{b}) \cdot \mathbf{t}](\mathbf{R} \cdot \mathbf{n}) \mathbf{R}\left(\frac{r-r_{1}}{r_{2}-r_{1}} \frac{s-s_{1}}{s_{2}-s_{1}}\right) \mathrm{d} s \mathrm{~d} r \mathrm{~d} y .
\end{aligned}
\]

\section*{More Monte Carlo Integration}

We can use the principles of Monte Carlo sampling to estimate the area under other types of curves
1. We must determine which dots are "inside" (underneath) versus "outside" (above) the curve
2. We must determine the bounds (area) of the sample space
3. We need to determine the number of samples (dots) required to achieve the desired accuracy
\[
\frac{\text { dots }_{\text {inside }}}{\operatorname{dots}_{\text {total }}}=\frac{\operatorname{area}_{\text {curve }}}{\text { area } a_{\text {sample }}}
\]

\section*{The Quadrature of a Parabola}
- Use the Monte Carlo method to estimate and display the area under the parabola \(y=4-x^{2}\)
- Pick 40,000 random points within a sample area bounded by \(-2 \leq x \leq 2\) and \(0<y \leq 5\)
- Plot sampled points under the curve red and sample points above the curve blue
- From calculus, we know the exact area is \(32 / 3\)
- Print the actual area, the estimated area, and the absolute percentage error (APE) of the estimate

\section*{Run mc_parabola.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
from numba import int64, float64, vectorize
Declare a numba accelerated function that computes the Halton QRNG
1. The parameter }n\mathrm{ is an integer of any size
2. The parameter p}\mathrm{ is a prime number
[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)
def halton(n, p):
h, f=0, 1
while n > 0:
f=f/p
h += (n % p) * f
n = int(n / p)
return h
Set the number of random dots (samples) to take

```
```

[3] \# Cell 3

```
[3] # Cell 3
    total_dots = 40_600 < (3)
```


Run mc_parabola.ipynb - Cells 4...5

```
Take \(n\) "random" samples of 2D Cartesian points \((x, y)\) using the Halton sequence
    1. Scale the results so \(-2 \leq x_{r n g} \leq 2\) and \(0 \leq y_{r n g} \leq 5\)
    2. The sample area is thus \((-2 \ldots 2) \times(0 . .5)=20\)
[4] \# Cell 4
    \(\mathrm{x}=(1-\) halton(np.arange(total_dots), 2)) * \(4-2\)
    \(y=(1-\) halton(np.arange(total_dots), 3)) * 5
    print( x )
    print ( y )
写 [ 2. 0. \(1 . \quad \ldots-0.64801025 \quad 0.35198975\)
    -1.64801025]
    \(\left[\begin{array}{llllllll}5 . & 3.33333333 & 1.66666667 & \ldots & 2.02086403 & 0.35419736 & 4.61345662\end{array}\right]\)
Create an array \(d\) containing \(y_{r n d}-f\left(x_{r n d}\right)\)
```



```
[5] \# Cell 5
    \(d=y-\left(4-x^{* * 2}\right)\)
```



```
    print(d)
企 [5.
                            \(-0.66666667-1.33333333 \ldots-1.55921868\)-3.52190586
        3.32939442 ]
```


Run mc_parabola.ipynb - Cells 6... 7

```
Create arrays of (x,y) coordinates that are "above" or "on or below" the parabola
Here f(x)=4-\mp@subsup{x}{}{2}\mathrm{ so if d>0 then the sample point is "above" the curve}\=
[6] # Cell 6
    x_in = x[d <= 0.0]
    y_in = y[d<= 0.0]
    x_out = x[d > 0.0]
    y_out = y[d > 0.0]
Calculate the absolute percent error in the area estimation
1. The actual/expected definite integral is \(\frac{32}{3}=10.6666 \ldots\)
```



```
2. The observed/estimated area using the Monte Carlo formulation \(=20 \times \frac{\text { dots }_{\text {inside }}}{\text { dots }_{\text {total }}}\)
[7] # Cell 7
    act = 32 / 3
    est = 20 * np.count_nonzero(d <= 0.0) / total_dots
    err = np.abs((est - act) / act)
    print(f"dots = {total_dots:,}")
    print(f"act = {act:.6f}")
    print(f"est = {est:.6f}")
    print(f"err = {err:.5%}")
\Psi dots = 40,600
    act = 10.666667
    est = 10.670936
    err = 0.04002%

\section*{Run mc_parabola.ipynb - Cells 8}

\section*{Display the scatter plot of the Monte Carlo estimation \\ [8] \# Cell 8 \\ plt.figure(figsize=(8, 6)) \\ plt.scatter(x_in, y_in, color="red", marker=".", s=0.5) \\ plt.scatter(x_out, y_out, color="blue", marker=".", s=0.5) \\ plt.title("\$y=-x^2+4\$") \\ plt.xlabel("x") \\ plt.ylabel("y") \\ plt.show()}

\section*{Check mc_parabola.ipynb - Cells 8}


\section*{Cumulative Distribution Function}

Estimate the probability that a normally distributed random variable will fall within \(\pm\) the first standard deviation \((\sigma)\) of its mean \((\mu)\)
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
\]


\section*{Cumulative Distribution Function}

Estimate the probability that a normally distributed random variable will fall within \(\pm\) the first standard deviation \((\sigma)\) of its mean \((\mu)\)
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
\]
\[
\left.\operatorname{area}_{\text {curve }}=\frac{\operatorname{dots}_{\text {inside }}}{\operatorname{dot}_{+0+\infty l}} * \operatorname{area}_{\text {sample }} \right\rvert\,(1,0.5)
\]
\[
\operatorname{area}_{\text {std normal }}=\frac{\operatorname{dots}_{\text {inside }}}{\operatorname{dot} s_{\text {total }}}
\]

\section*{Run mc_std_normal.ipynb - Cells 1... 3}
```

Import needed packages/modules
[1] \# Cell 1
import matplotlib.pyplot as plt
import numpy as np
from numba import int64, float64, vectorize
Declare a numba accelerated function that computes the Halton QRNG
1. The parameter }n\mathrm{ is an integer of any size
2. The parameter p}\mathrm{ is a prime number
[2] \# Cell 2
@vectorize([float64(int64, int64)], nopython=True)
def halton(n, p):
h, f=0, 1
while n > 0:
f=f/p
h += (n % p) * f
n=int(n/p)
return h
Set the number of random dots (samples) to take

```
```

 total_dots \(=30 _000\)
    ```
```

 total_dots \(=30 _000\)
    ```

\section*{Run mc_std_normal.ipynb - Cells 4...5}
```

Take n "random" samples of 2D Cartesian points (x,y) using the Halton sequence
1. Scale the results so -1 \leq x rng }\leq1\mathrm{ and 0}\leq\mp@subsup{y}{rng}{}\leq0.
2. The sample area is thus (-1···1) }\times(0···\frac{1}{2})=
[4] \# Cell 4
x = (1 - halton(np.arange(total_dots), 2)) * 2.0 - 1.0
y = (1 - halton(np.arange(total_dots), 3)) * 0.5
print(x)
print(y)

```
```

->* [1. 0. 0.5 ···. -0.41156006 0.08843994

```
->* [1. 0. 0.5 \ldots. -0.41156006 0.08843994
    -0.91156006]
    -0.91156006]
    [0.5 0.33333333 0.16666667 \ldots. 0.49120222 0.32453556 0.15786889]
    [0.5 0.33333333 0.16666667 \ldots. 0.49120222 0.32453556 0.15786889]
Create an array d containing yrnd
Here f(x)\equiv the Gaussian Standard Normal PDF
[5] # Cell 5
    def f(x): \ (3)
        # Standard Normal PDF
        return 1.0 / np.sqrt(2.0 * np.pi) * np.exp(-np.power(x, 2) / 2.0)
    d = y - f(x)
    print(d)
\Psi7 [ 0.25802928 -0.06560895 -0.18539866 ... 0.12465553 -0.07284958
    -0.10544475]
```


Run mc_std_normal.ipynb - Cells 6... 7

```
Create arrays of (x,y) coordinates that are "above" or "on or below" the curve
if d>0 then the sample point is "above" the curve
[6] # Cell 6
    (1)
    x_in = x[d<< 0.0]
    y_in = y[d<< 0.0]
    x_out = x[d > 0.0]
    y_out = y[d > 0.0]
Calculate the absolute percent error in the area estimation
1. The actual/expected definite non-analytic integral is \(0.682689492 . .\).
2. The observed/estimated area using the Monte Carlo formulation \(=1 \times \frac{\text { dots }_{\text {inside }}}{d_{\text {stal }}}\)
```

```
[7] # Cell 7
```

[7] \# Cell 7
act = 0.682689492
act = 0.682689492
est = 1 * np.count_nonzero(d <= 0.0) / total_dots
est = 1 * np.count_nonzero(d <= 0.0) / total_dots
err = np.abs((est - act) / act)
err = np.abs((est - act) / act)
print(f"dots = {total_dots:,}")
print(f"dots = {total_dots:,}")
print(f"act = {act:.6f}")
print(f"act = {act:.6f}")
print(f"est = {est:.6f}")
print(f"est = {est:.6f}")
print(f"err = {err:.5%}")
print(f"err = {err:.5%}")
\Psi dots = 30,000
\Psi dots = 30,000
act = 0.682689
act = 0.682689
est = 0.682667
est = 0.682667
err = 0.00334%

```
    err = 0.00334%
```


Run mc_std_normal.ipynb - Cell 8

```
Display the scatter plot of the Monte Carlo estimation
Include a line graph of the Std Normal PDF to highlight the integrand
[8] # Cell 8
act_x = np.linspace(-4, 4, 100)
plt.figure(figsize=(10, 8))
plt.scatter(x_in, y_in, color="red", marker=".", s=0.5)
plt.scatter(x_out, y_out, color="blue", marker=".", s=0.5)
plt.plot(
    act_x, act_y, color="green", ب (3)
    label=r"$\frac{1}{\sqrt{2\pi}}e^{\frac{-\mp@subsup{x}{}{\wedge}2}{2}}$"
)
plt.title("Standard Normal CDF")
plt.axhline(0, color="gray")
plt.axvline(0, color="gray")
plt.xlim(-4.0, 4.0)
plt.ylim(-0.1, 0.6)
plt.xlabel("x")
plt.ylabel("PDF")
plt.legend(loc="upper right", fontsize="12")
plt.tight_layout()
plt.show()
```


Check mc_std_normal.ipynb - Cell 8

Session 02 - Now You Know...

- Monte Carlo integration uses random sampling
- The method calculates the ratio of the points below the curve to the total number of points - the final ratio is the "area"
- It may require billions of samples to provide a reasonable estimate
- It may be the only way to take the integral of a very complex function
- What you are taught cannot be the limit of your knowledge
- The volume of a 4-D unit hypersphere $=\frac{\pi^{2}}{2}$
- In infinite dimensions the volume of all hyperspheres is zero!
- A fractional 5-dimensional unit sphere has maximum volume
- Mother Nature never said dimensions must be integers!

