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Session 04 — Topics

Use SciPy to simulate numerical solutions to ordinary
differential equations (ODEs) representing physical laws

Model the radioactive decay of Fluorine-18

Model a damped oscillator to appreciate the impact of
critical damping

Simulate the Dynamical Kinematics of a Model Rocket
through lift-off, where the system mass decreases as solid
motor fuel is burnt to produce thrust

Model the electrostatic field around the charged parallel
plates inside a capacitor where the surrounding walls are
conductors (fixed potential) or insulators (fixed charge)




Solve ODEs with SciPy

* We often must numerically solve systems of differential
equations so we can simulate dynamic models

* The Python package SciPy contains several ready-to-use
numerical methods to estimate the solution to a variety of
differential equations

e Ordinary and Partial Differential Equations (ODE/PDE)
* Linear and Non-Linear Differential Equations

* Initial Value Problem (IVP) and Boundary Value Problems
(BVP)

* Both Individual and Systems of Linked Differential Equations



Scientific Computing with Python

https://scipy.org

FUNDAMENTAL ALGORITHMS

SciPy provides algorithms for optimization,
integration, interpolation, eigenvalue problems,
algebraic equations, differential equations,
statistics and many other classes of problems.

PERFORMANT

SciPy wraps highly-optimized implementations
written in low-level languages like Fortran, C, and
C++. Enjoy the flexibility of Pythonwith the speed
of compiled code.

Fundamental algorithms for scientific computing in Python

GET STARTED

BROADLY APPLICABLE

The algorithms and data structures provided by
SciPy are broadly applicable across domains.

EASY TO USE

SciPy’s high level syntax makes it accessible and
productive for programmers from any
background or experience level.

FOUNDATIONAL

Extends NumPy providing additional tools for
array computing and provides specialized data
structures, such as sparse matrices and
k-dimensional trees.

OPEN SOURCE

Distributed under a liberal B5D license, SciPy is
developed and maintained publicly on GitHub by a
vibrant, responsive, and diverse community.



https://scipy.github.io/devdocs/tutorial/general.html

Modelling Nuclear Decay

N(t) = number of nuclei at time t

T = mean lifetime (half life)

dN | N(t)

dt T
dN _ N(t+At) —N(8) Fermat's Difference
dt At Quotient

“N@®)|_ Nt +A) -N(Q©)

\ 4

T

At

N(t)

N(t+ At) = N(t) — TM

This is Euler’s Method
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Modelling Nuclear Decay

N(t) = number of nuclei at time t

T = mean lifetime (half life)

u(t)
\\
.................... I””
Leonhard Euler TS
(1707 - 1783) ~
3 1 tn t 1
N(t)

N(t+ At) = N(t) — TM

This is Euler’s Method



Runge-Kutta Methods

* Around 1900, two German mathematicians, Carl Runge and
Wilhelm Kutta, wanted to improve the accuracy of Euler's
Method

* Following the same motivation underlying Simpson's Rule
for numerical integration, they developed a method of
interpolating a curve between the endpoints of a sampled
interval

e Using a weighted combination of tangent lines sampled
throughout an interval, a more accurate derivative can be
calculated than using the single tangent line in Euler's
Method



Runge-Kutta Methods
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Scientific Computing with Python

Ordinary differential equations (solve_ivp)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example.

The function selve_ivp is available in SciPy for integrating a first-order vector differential equation:

dy

— =f(v.1),
7 (v, 1),

given initial conditions y (0) = yg, where y is a length N vector and f is a mapping from RN o RN . A
higher-order ordinary differential equation can always be reduced to a differential equation of this type by

introducing intermediate derivatives into the y vector.

method : string or 0deSolver , optional

Runge-Kutta-Fehlberg (RKF45)

Integration method to use:

e 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]. The error is
controlled assuming accuracy of the fourth-order method, but steps are taken
using the fifth-order accurate formula (local extrapolation is done). A quartic
interpolation polynomial is used for the dense output [2]. Can be applied in the

complex domain.

First, convert this ODE into standard form by setting ¥y = [%,

dy _[tw] _[0 ¢t][w] _[O ¢
dt o 1 0 |y 1 0]

'w} and t = z. Thus, the differential

equation becomes




Fluorine-18

(vi) PET image

(ii) Radiochemistry [LFIFDG

E- At least 5% of -i

i the injected i

| Flourine-18 ! / —> >

i must still be i (iii) Injection =N

i present to be i (iv) Detection (v) Image construction
| detected j
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Fluorine-18

Example: FDG

OH

* Fluorodeoxyglucose is a

radiopharmaceutical is a glucose
analog with the radioactive isotope

Fluorine-18 in place of OH

F
HO 1* "F has a halflife of 110 minutes 1

'|RF [ N N N N N N N N N N N N N N § |

OH

OH

2-Deoxy-D-Glucose (2DG)

* FDG is taken up by high glucose using

cells such as brain, kidney, and cancer
cells.

Once absorbed, it undergoes a
biochemical reaction whose products
cannot be further metabolized, and are
retained in cells.

* After decay, the “F atom becomes a

harmless non-radioactive heavy
oxygen "O- that joins up with a
hydrogen atom, and forms glucose
phosphate that is eliminated via carbon
dioxide and water

11



Run fluroinel8 decay.ipynb — Cells 1...2

Import needed packages/modules

[1] # Cell 1
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve ivp

import pandas as pd —<C—— @
Define the model function containing the differential equation

dN _ _ N() | o)

dt T

[2] # Cell 2
def model(time, state_vector, tau) :«e— @
# Unpack current state wvector

n = state veclor < ——— @

# Express differential equation
d_n=—n;’tau4_®
return d_N g— ()

12



Run fluroinel8 decay.ipynb — Cell 3

Set simulation parameters and initial conditions

1. We will simulate the decay over a 12 hour duration
2. The half-life of F'18 is 110 minutes — (D
3. We will start at 100% concentration of nuclei

[3] # Cell 3
final time = 12 # hours
half_life = 110 / 60 # hours G Q)
initial concentration = 188 # molecules/L




Run fluroinel8 decay.ipynb — Cell 4

Use scipy's solve_ivp() to numerically estimate the ODE using the RKF45 Method <=

1. We will limit the solver to a maximum time step of 0.01 hour
2. The actual time values used will be returned by the solver
3. The solver will also return the nuclei concentration at each time value

© #cell 4
sol = solve ivp( Ge———— @
model, <«— @
(@, final time), # tuple of time span <CG——— @
[initial_concentration], # initial state vector <«—— @
max_step=0.91, Gm—— ()
args=(half life,), # tuple of constants used in ODE <——— @

)

# Retrieve results of the solution

time steps = sol.t
_STep - (D

nuclei, = sol.y

# Display the first 18 time and concentration values
pd.DataFrame( |
"Time (hrs)': time_steps[:18],
"% Concentration': nuclei[:1@]

— @
3)
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Run fluroinel8 decay.ipynb — Cell 4

Use scipy's solve_ivp() to numerically estimate the ODE using the RKF45 Method <€ (1)

1. We will limit the solver to a maximum time step of 0.01 hour
2. The actual time values used will be returned by the solver
3. The solver will also return the nuclei concentration at each time value

Time (hrs) X Concentration

© #cells 0 0.00 100.000000
sol = solve ivp( Ge———— @
Mode]l, u—(3) 1 0.01 99.456030

(@, final time), # tuple of time span <Ce— @

[initial concentration], # initial state vector <« 2 . BiAlE 2L

Max_step=0.01, Gm— (G) 3 0.03 08.376952

args=(half life,), # tuple of constants used in ODE <
) 4 0.04 97.841811
# Retrieve results of the solution 3 0.05 97.309582
time steps = sol.t

=3 P — ] 0.06 095.780247
nuclei, = sol.y

7 0.07 05.253792

# Display the first 18 time and concentration values 8 0.08 95730200

pd.DataFrame( |
"Ti h "ot i :18],
ime (hrs) LR © 9 0.09 05.209457

"% Concentration': nuclei[:1@]

3)
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Run fluroinel8 decay.ipynb — Cell 5

Fluorine-18 Decay

100 4
What two key concepts does this graph suggest?

80 -
1. After 12 hours the ingested Fluorine-18 has
decayed enough to not be a lingering threat

60

entration

2. Medical staff must get patients into the PET

At least 5% of the scan within ~5 hours after taking Fluorine-18

injected Flourine-18
must still be present
to be detected

Time (hours)
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Modelling a Simple Pendulum

=i /_\Gravity isa
Fg|= —mgsin6 restoring force
! [ = length d?6
s = arclength 0 l of the rod }){l 7 = —%g sin 0
along the ! (constant) dt
erimeter 3
g ! % = Phase Constant
L d-e gl
# Fy F = — T sin O
s =0whenf8 =0
s=106 F =ma
de in 0 break the 2"
nd Ao e — = ——SIn We can break the 2"
TaksOZth scil(j;l;ﬁ\i/:;}c/ﬁ of _ sz dt l order ODE into two linked
. F=m dt? first-order ODEs and use
respect to time t do RKFA5 )
= w on eac
dt
d?s , d?6 5 , d?6
= = m —_—
de?|”  dt? 0 dt?
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Damped Harmonic Oscillator

d*6 g| . g X
7= sin 0 T = The phase constant

dt?

We can introduce a new resistive force term
into the equation of motion for a pendulum

d*6 do

I1Z = —qE—TsinG

q = The damping constant

dw
dt
o
==

= —qw —Tsine

w
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Damped Harmonic Oscillator

* Underdamped — The system swings back and forth (oscillates)
over its equilibrium point, but ultimately comes to rest

Example:g = 1
* Overdamped — The system never oscillates, but it takes a
while for it to return to its equilibrium point

(phase constant)?
2

* Critically damped — The system never oscillates and returns to
its equilibrium point in the least amount of time

Example: g =

(phase constant)?

Note: There is only one q = 4
value for q where the /

system is critically damped

19



Run damped_pendulum.ipynb — Cells 1...2

Import needed packages/modules

[1] # Cell 1 G (1)
from pathlib import Path

import matplotlib.pyplot
import numpy as np

from matplotlib.ticker i
from scipy.integrate imp

import pandas as pd

Define the model function containing the differential equation:
dze de g _:

- = — _ — —

o a5 I51]18 @

Using linked first order differential equations:

dw
S dt
do _

= —qw — I sin @

| 1

— 0

[2] # Cell 2
def model(time, state_vector, phase_constant, damping_constant): e
# Unpack dependent variables from current state vector

omega, theta = state vector < —— @

# Express differential equation

d _omega = -damping constant * omega - phase constant * np.sin(theta)
d_theta = omega < — @

return d_omega, d theta «e—— @

20




Run damped_pendulum.ipynb — Cell 3

[3]

Set simulation parameters and initial conditions G (1)

1. The pendulum maintains a constant length of 1.0 meter

2. The acceleration due to gravity g = 9.81%

3. The simulation will last 15 seconds G ()

4. The initial anglular displacement 8 = 75°

5. The pendulum will be released from rest such that wg = 0.0 %f

6. The three damping constants will be set to their critical values €= ®

# Cell 3

pendulum length = 1.8 # meters

phase_constant = 9.81 / pendulum_length

time_final = 15.8 # seconds

theta_initial = np.radians(75) # 75 degress < @
omega initial = 8.2 # rad/s

# Set the damping constants

underdamped_constant = 1.8 <u——— @
overdampaed constant = pow(phase_constant, 2) [ 2.0 < ———

critically damped_constant = pow(phase_constant, 2) / 4.8 <=

21



Run damped_pendulum.ipynb — Cell 4

Use scipy's solve_ivp() to numerically estimate the ODE using the RKF45 Method

1. We will limit the sclver to a maximum time step of 0.01 second
] 2. The actual time values used will be returned by the solver

sol = solve ivp(
model 3. The solver will return the angular velocity (w) at each time value
(8, time final), 4.ThesoWeerImuﬂntheangumrdmpmcemEHT(Q)ateachTWnevaME
[omega_initial, theta initial],
max_step=6.81,
args=(phase_constant, underdamped_constant), (e @

[4] # Cell 4

time steps = sol.t

sol = solve_iwp(
theta_underdamped = sol.y[1]

model,

(@, time final},
[omega_initial, theta_initial],
max_step=8.61,

args=(phase_constant, werdamped_constant],T_ @

theta_overdamped = sol.y[1] sol = solve_ivp(

model,

(@, time_final),

[omega initial, theta initial],
max_step=8.81,
args=(phase_constant, cr‘itically_damped_constantj,‘- @

# Display the first 186 time and displacement values
pd.DataFrame( | ;
‘Time (s)': time_steps[:18], theta_critically damped = sol.y[1]

"Under’: theta underdamped[:18],
"Over': theta overdamped[:18], l C)

"Crit’: theta critically damped[:18],

22



Check damped pendulum.ipynb — Cell 4

Time (s) Under ver Crit
0 0.000000 1.308997 1.308997 1.308997
1 0.000105 1.308997 1.308997 1.308997
2 0001160 1.308991 1.308991 1.308991
3 0011160 1.308400 1.308500 1.308456
4 0021160 1.306891 1.307444 1.307194
5 0031160 1.304445 1.306040 17.305360
6 0041160 1.3071082 1.304421 1.303077
7 0051160 1.296812 1.302669 1.300441
8 0061160 1.291644 1.300835 1.297529
9 0071160 1.285590 1.298951 1.294400
d20 do _
P P TI
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Run damped_pendulum.ipynb — Cell 5

Plot the angular displacment over time for each type of pendulum

[5] # Cell 5
plt.figure(figsize=(8, 6))
plt.plot(time_steps, theta underdamped, <G @
label="underdamped”, c="r", lw=2, zorder=3)
plt.plotitime steps, theta overdamped, -G————— ®
label="overdamped", c="b", lw=2, zorder=3)
plt.plot(time_steps, theta critically damped, < @
label="critically damped”, c="g", lw=2, zorder=3)
plt.title("Damped Pendulums™)
plt.xlabel{"Tims (sec)")
plt.ylabel{"Angular Displacement {radians)")
plt.axhline(y=08.8, color="lightgray" ) <(e— @
ax = plt.gca()
ax.xaxis.set minor locator(AutoMinorLocator(})
ax.yaxis.set minor locator{AutoMinorLocator())
ax.legend(loc="upper right")
plt.show()
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Check damped pendulum.ipynb — Cell 5

Angular Displacement (radians)

Damped Pendulums

L25€
Lﬁﬂé
u?5€
&5D€
a25€
uoné
—ﬂ.zﬁé

—0.50

—-0.75

— underdamped
— overdamped
— critically damped

In what applications would
you want a system to be
critically damped?

(¥ 8
Time (sec)

10 12 14
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Damped Harmonic Oscillator

26



Tuned Mass Dampers

Taipei 101 — Taiwan
The Worlds Tallest Building
(2004-2009)




91st Floor [390.60 m]
(Outdoor Observation Deck)
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Model Rocket

* This Model Rocket has two stages, with each stage
containing its own F15 rocket motor

» After the 1t (booster) stage is ignited, the rocket will
blast off and begin to rise using just the booster
motor

* After the 15t stage motor burns out, the booster
stage (with its spent motor) is ejected, the 2" stage
F15 motor ignites, and the rocket continues to
ascend

Stage 2

* The 2"d stage and its motor remain part of the
rocket throughout the duration of the flight

Stage1

29



Stage 2

Stage1

Model Rocket

* The Stage 1 booster has a mass of 0.0519 kg (not
including its F15 motor)

* The Stage 2 main rocket has a mass of 0.1729 kg
(not including its F15 motor)

* An F15 model rocket motor has a mass of 0.101 kg,
generates a thrust of 17.2 Newtons, and burns for
1.6 seconds

* For this simulation, we will assume the thrust of a
motor is constant throughout its burn, assume there
is no delay between the ejection of the booster and
the ignition of the Stage 2 motor, and ignore air
friction

30



Model Rocket

We must model the trajectory of the rocket over the first four
seconds of its flight: from liftoff to booster separation and into
its unpowered glide phase

We want to calculate the rocket’s mean velocity (mph) and
altitude (feet) over time (seconds) and determine its average
speed and maximum height through four seconds

We will assume the mass of each motor reduces linearly
throughout its burn (100% of mass at ignition and 0% of mass
at moment of burnout)

The force of gravity resisting the rocket is:

G = Gravitational Constant G X ME Xm m = Mass of rocket
Mg = Mass of Earth F:q — h = Height of rocket

R = Radius of Earth (R + h)Z

31



Run model rocket.ipynb — Cells 1...2

Import needed packages/modules

[1] # Cell 1 G (D
from pathlib import Path

import matplotlib.pyplot
import numpy as np

from scipy.integrate impd

import pandas as pd

Set simulation parameters and initial conditions

[2]

1. The simulation will last 4 seconds
2. The rocket will start at height = 0 meters and launch from rest vy = 0.0
3. The mass of each stage of the rocket does not include the mass of its motor

# Cell 2
tf = 4.0 # Simulation time (5) G Q)

G = 6.67438e-11 # Gravitational constant (m*3/kg/s"2)
M = 5.072224 # Mass of the Earth (kg) G (3)
R = 6.371e6 # Radius of the Earth (m)

# For this model rocket

STAGE1_MASS = 0.0519 # kf e (@)
STAGE2_MASS = 8.1729 # kg

# For an F15 model rocket engine
ENGINE_MASS = 6.181 # kg

ENGINE_THRUST = 17.2 # Newtons
ENGIME BURNOUT = 1.6 # seconds

«— 0

32




Run model _rocket.ipynb — Cell 3

Define functions to return the instantaneous thurst and mass of the rocket €

1. The variable 1 is the elapsed time (in seconds) since liftoff
2. The Thrust Df a ntar ic nnnetant threainboat ite s

— O

3. The mass of eac| [31 # Cell 3
def thrust func(t): <G —————— @
4. At motor burnout # returns thrust in Newtons
5. There is no delay| if t < ENGINE_BURNOUT * 2:
Peturn ENGINE_THRUST G (3)

B. Air friction is not
return @ <G——— @

def rocket mass func(t): — @
# returns weight in kilograms

if t <= ENGINE_BURNOUT: (= ()

if t <= ENGINE_BURNOUT * 2; G (2)

return STAGE2 MASS + motor_mass
PEtUPn STAGEZ MASS <

print(f"Liftoff Thrust = {thrust func(e):.2f} N")
print{f"Liftoff Mass = {rocket mass func(@):.2f} kg")

(4]

Liftoff Thrust = 17.28 N

Liftoff Mass = @.43 kg @

motor_mass = ENGINE_MASS * (ENGIME_BURNOUT - t)} / ENGINE_BURNOUT
return STAGE1 MASS + motor_mass + STAGE2 MASS + ENGIME MASS

motor_mass = ENGINE_MASS * (ENGIME_BURNOUT * 2 - t) / ENGIME_BURNOUT

33



Run model_rocket.ipynb — Cell 4

Define the model function containing the differential equation:

dES — (Ft'th“"t‘_Fg} — ®
dt* m

m (mass of rocket in kg) = depends on elapsed time

Finrust (in Newtons) = depends on elapsed time

GxM
Fg — ZXTEXM where height h (in meters) depends on elapsed time

(Re-+h)’
Using linked first order differential equations:

1 dv (Fthrust—Fg)

[4] # Cell 4
def model(t, state vector): <G — @
v, h = state vector # h (height) = distance <— @
m = rocket mass_func(t) e— @
F_thrust = thrust func(t) <¢————— @
F gravity =G *M *m / (R + h) ** 2

d v = (F thrust - F gravity)} / m
dh - E - Ereey) <

return d_v, d_h  G———— @

34



Run model _rocket.ipynb — Cell 5

Use scipy's solve_ivp() to numerically estimate the ODE using the RKF45 MethudJ— @

1. We will limit the solver to a maximum time step of 0.01 second
2. The actual time values used will be returned by the solver
3. The solver will return the velocity and height each time value

[5] # Cell 5

s0l = solve ivp(model, (8, tf), [8, 8], max _step=0.81) 0
t = sol.t y @ 1
v, h = sol.y
2
v *= 2.23 # Convert m/s to mph
h *= 3.28 # Convert m to feet @ 3
4

# Display the first 18 time and displacement values
pd.DataFrame(]{ 3
"Time (s)": t[:18],

"WVelocity (mph)': v[:18], —————— @ 6
'"Height (ft)': h[:18], 7

1)
B8
9

Time (s) Velocity (mph)

0.0000

0.0001

0.0011

0.011

0.0211

0.031

0.0411

0.051

0.0611

0.0711

0.000000

0.006797

0.074775

0.755290

1.437137

2120323

2.804849

3.490722

4177943

4866519

Height (ft)
0.000000e+00
4.998742e-07
6.048872e-05
6.163369e-03
2.228541e-02
4.844625e-02
8.466560e-02
1.309632e-01
1.87358%¢e-01

2.538726e-01
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Run model_rocket.ipynb — Cell 6

Plot the rocket velocity and altitude over time g (1)
Include the mean velocity and maximum height over four seconds of flight

[6] # Cell &
plt.figure{figsize=(18, 4))
ax = plt.subplot(1, 2, 1)
ax.plot(t, v, color="blue", lw=2) <Ce————— @
ax.set title(f"Rocket Velocity - Mean: {np.mean{v):.2f} mph")
ax.set xlabel{"Time (s)")
ax.set ylabel("Velocity (mph)")
ax.grid({"on™)
ax = plt.subplot(l, 2, 2)
ax.plot(t, h, color="orange"”, lw=2) <(e—— @
ax.set title(f"Rocket Altitude - Max: {np.max(h):,.2f} feet")
ax.set xlabel("Tims (s)")
ax.set ylabel("Altitude (feet)")
ax.grid({"on™)
plt.tight layout()
plt.show()
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velocity (mph)

Check model_rocket.ipynb — Cell 6

Rocket Velocity -{Mean: 192.62 mph)| Rocket Altitude -[Max: 1,138.59 feet]
350
1000
300 ~
250 - - 800
u
<
200 + L 600
=
=
150 - =
T 400 -
100 -
200 +
50 4
0 - 0 -
T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Time (s) Time (s)

A
\ 4
A
v

No single analytic equation
can be derived that models
the entire flight

15t stage 2" stage
booster main
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Hidden Figures, Fox 2000 Pictures, 2016

38/ 777

TECHNICAL NO
D- 233

DETERMINATION OF AZIMUTH ANGLE AT BURN
SATELLITE OVER A SELECTED EARTH
By T. H. Skopinski and Katherine G.

Langley Research Center
Langley Field, Va.

Time from perigee is expressed as

£(8) = ~(E - e sin E) (8)
21

Eccentric anomaly (fig. 1(b)) is given by

E =2 tanl [|[22E tan 3 Runge-Kutta
l+e 2

Method

In the use of eguations {15} and (E‘D} an iterative procedure 1s
required, since the time t(8pe) from perigee to the equivalent posi-
tion 1s not known initially. A satisfactory first approximation is to
assume that

38




Electrostatic Field Between Parallel Plates

* Model the electrostatic field around the charged parallel
plates inside a capacitor where the surrounding walls are
conductors (fixed potential) or insulators (fixed charge)

* Numerically estimate solutions to the Laplace 2" order
partial differential equation using both Neumann and
Dirichlet boundary conditions

* Use a convolution kernel (a stencil) to perform Jacobi
relaxation over a discretized grid

39



Electrostatic Field in Parallel Plates

40



Electrostatic Field in Parallel Plates

41



Electrostatic Fields

Coulomb’s Law

4mey

FElectric Potential (Voltage)

B
Wyop = j
A

d19>
E(r) =
() 4‘77:80
11 -1
2 r g 14

Fds

d149>2 d19>2

2 = F=k 2

 4meyr? £, = Permittivity
of free space

1 1
Ta T

P 414> q = Electric charge
E = 419>
e

(Coulomb's constant)

A as reference point .. 15 =

EA ==
41TEnTy

1 1
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Electric Field Potential Between Charges

Electric Potential (V)
A scalar field
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I
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¥ [m]

Electric Field (V/m)
A vector field

y [m]
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Electric Field Potential Between Charges

¥ [m]

] (=]

= [=]

(=]

Electric Potential [V]
y [m]

Electric Potential (V) E— _vy Electric Field (V/m)
A scalar field — A vector field
The negative sign indicates Physically, this means that a
that the electric field points positive charge will naturally move
towards a decreasing potential from regions of higher potential to

regions of lower potential
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Electric Field Potential Between Charges

y [m]

] (=]
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lectric Potential [V]
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I
-
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Electric Potential (V)
A scalar field A vector field

Electric Field (V/m)

V-E=—-V2V =0
For an electrostatic field (the field isn’t changing)
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Electrostatic Field in Parallel Plates

ViV =0

For a function to be static, it is not enough for the first derivative to
be zero — think of the pendulum at the far left or right of its swing...
Its 2" derivative must also be zero!

2D Continuous Vi) = 0"V + il =0
d0x? = 0dy?

SRS 1
Discretization = : ' . _ - N _
over a 2D Grid Vi'j - 4 (Vl+1J + Vl—l,] + Vl,]+1 + Vl,]—l) =0

i—1 i i+1
- B
 AEE
o IS
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Electrostatic Field in Parallel Plates

ViV =0

For a function to be static, it is not enough for the first derivative to
be zero — think of the pendulum at the far left or right of its swing...
Its 2"d derivative must also be zero!

92V 9%V
V=-xt+-—=0

2D Continuous V2
0x? 0y?

) . 1
Discretization —
over a 2D Grid Vi’j ~ 4 (Vi+1’j T Vi_l’j T Vi’j+1 T Vi’j_l) =0

A convolution kernel (stencil)

0 1/4 0
1/4 0 1/4
0 1/4 0 |
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Electrostatic Field in Parallel Plates

* If we apply the convolution of the kernel to successive
overlapping 3 x 3 swatches of the field grid (across both the x
and y dimensions), we will find the “next in time” value of the
electric field for each point in the grid

* A convolution involves multiplying each cell in the 3 x 3 kernel with
the corresponding cell in the current swatch location (within the grid)
and then summing those nine products

* We convolve the entire 2D field grid with the kernel enough times to
ensure every “next in time” grid cell value is equal to its “prior in
time” grid cell value — meaning there is no change over time

* When this condition is realized, we have reached a steady
state and therefore have an electrostatic field. This iterative
approach is called the Jacobi Relaxation Method
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Electrostatic Field in Parallel Plates

* With ordinary differential equations (ODEs), we must specify
the initial conditions for an exact solution. We must specify
boundary conditions with partial differential equations (PDEs)

* In our simulation of the electrostatic field around parallel
plates, we have two choices for boundary conditions:

* Neumann boundary conditions: the plates are surrounded by walls of
conductors, thus preventing any electric potential from building up
along the walls, so the cells around the outermost edges of the grid are
forced to maintain the same field strength as their neighboring cells.
This makes a zero gradient along the walls

* Dirichlet boundary conditions: the plates are surrounded by walls of
insulators, thus preventing any electric charge from building up along
the walls, so the cells around the outmost edges of the grid are forced

to maintain a zero voltage
49



Rune

ectrostatic_fields.ipynb — Cells 1...2

Import needed packages/modules

[1] # Cell 1
from pathlib import Path

import matplotlib.pyplot as plt

import numpy as np

from matplotlib.patches import Rectangle
from scipy.ndimage import convolve, generate_binary_structure ]

Define a function to enforce Neumann boundary conditions < @

1. If the walls are conductors , the edges must have a zero gradient (V = 0)
2. We can force V = 0 by ensuring the outermost grid cells have

the same potential as their next adjacent inner grid cells ——— @
3. Note that V = 0 does mean the edges must be at zero volfage
4. Carl Neumann (1832-1925)

[2] # Cell 2

def conductor edges(a): <G——— @
# Carl Neumann (1832-1925)
# A conductor forces the edges to
# have zero potential (gradient=8)
a[e, :] = a1, :]
a[-1, :] = a[-2, :]
af[:, 8] = a[:, 1]
al[:, -1] = a[:, -2]

«— ©®

return 3 < ——————— @
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Run electrostatic_fields.ipynb — Cell 3

[3]

Define a function to enforce Dirichlet boundary conditions g (1)

1. If the walls are insulators, the edges must have zero potential (V' = 0)

2. We can force V' = 0 by setting the outermost edges in the array 10 be zero G——(2)

3. Note that V' = 0 does not mean V = 0 at the walls G 3)
4. Johann Dirichlet (1805-1859)

# Cell 3

def insulator edges(a): < — @
# Johann Dirichlet (1885-1859)
# An insulator forces the edges to
# have a fixed charge (voltage=8)
a ] =]

[
a[ &] 2]
[

w

-1]1 =@
retUrn 3 G —— @
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Run electrostatic_fields.ipynb — Cell 4

Define a function to solve the Laplacian 2nd order PDE ?2(;5 = ( for electrostatic fields 4‘— Q)

1. The function receives a matplotlib axes object in which to render the plot
2. The fucntion receives a function to enforce the boundary conditions G— Q)
3. The function also receives the voltage of the left and right plates

[4] # Cell 4
def solve_laplace(ax, boundary_func, left_wolts, right_volts): < ———— @
N = 188 # Number of 2D grid cells in the x & y directions
grid = np.zeros((N, N)) <——— @
grid[3e:78, 29:38] = left volts ¢
grid[3e:7e, 7@:71] = right volts @
# Create masks for plates using boolean indexing
mask_left = grid == left voltS  (Quu— @
mask_right = grid == right volts
# Create a convolution kernel to apply over grid each iteration < @
kern = generate binary structure(2, 1).astype(flcat) /[ 4
kern[1, 1] = @
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Run electrostatic_fields.ipynb — Cell 4

for _ in range(5000): # Number of Jacobi relaxation iterations <« @
# Create a new grid by using convolution to average
# every four neighbor cells in the current grid
grid next = convolve(grid, kern, mode="constant") «e——— @
# Reapply the boundary conditions
grid next = boundary func(grid next) <« @
# Reapply the plate voltages
grid next[mask left] = left wolts — @
grid next[mask right] = right volts
# The "next" grid now becomes the current grid
grid = grid next «—— @
# Render a colored contour plot of the electrostatic field potential
surf = ax.contourf(range(N), range(N), grid, cmap="rainbow", levels=20) <«
ax.get figure().colorbar(surf, ax=ax, shrink=8.5)
# Blacken the two parallel plates
ax.add patch(Rectangle((22, 38), 1, 48, edgecolor="k", facecolor="k")}
ax.add patch{Rectangle((7e, 38), 1, 48, edgecolor="k", facecolor="k")})
# Title the graph
if boundary func == conductor edges: <
ax.set title("Conductor Edges™)
glse:
ax.set title("Insulator Edges")
ax.set_aspect("equal™)
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Run electrostatic_fields.ipynb — Cell 5

Define a function to display the electrocstatic field between two parallel plates <=

1. The function receives the requested left and right plate voltages
2. The function will display the results of the field between the two plates
3. The situations where the walls are conductors and insulators are both shown

Simulate LEFT plate = —1V and RIGHT plate = +1V

[5] # Cell 5
def plot plates{left volts, right volts): <G— @
plt.figure(figsize=(18, 5.5))
axl = plt.subplot(l, 2, 1)
ax2 = plt.subplot(l, 2, 2)
solve laplace(axl, conductor edges, left wolts, right wvolts)
solve laplace(ax2, insulator edges, left wolts, right volts)
plt.tight layout()
plt.show()

—

# Show the results where left plate is -1V and right plate is +1V

— @

plot_plates(-1, 1) <Guu— @
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Check electrostatic_fields.ipynb — Cell 5

Conductor Edges Insulator Edges

0.9

0.6

0.3

0.0

T T
60 80

Simulate LEFT plate = —1V and RIGHT plate = +1V
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Run electrostatic_fields.ipynb — Cell 6

Simulate LEFT plate = —1V" and RIGHT plate =19V

[6] # Cell &
plot_plates(-1, 9) <G ——————— ®

)

Conductor Edges

Insulator Edges

9.0

1.5

6.0

4.5

3.0

1.5

0.0
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Run electrostatic_fields.ipynb — Cell 7

Simulate LEFT plate =+9V and RIGHT plate =+9V

[7] # Cell 7
plot_plates(9, 9) <— G)

[¥]

Conductor Edges

8.85

8.55

8.25

7.95

7.65

7.35

7.05

6.75

6.45

Insulator Edges

o - N W s WU o N 0 W
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Session 04 — Now You Know...

Use SciPy to simulate numerical solutions to ordinary
differential equations (ODEs) representing physical laws

Model the radioactive decay of Fluorine-18

Model a damped oscillator to appreciate the impact of
critical damping

Simulate the Dynamical Kinematics of a Model Rocket
through lift-off, where the system mass decreases as solid
motor fuel is burnt to produce thrust

Model the electrostatic field around the charged parallel
plates inside a capacitor where the surrounding walls are
conductors (fixed potential) or insulators (fixed charge)
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What | cannot create, | do not
understand.

— Richard P ?et.:?!_rt.-ﬂm.n..- —

THANK YOU!
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