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Session 04 – Topics

• Use SciPy to simulate numerical solutions to ordinary 
differential equations (ODEs) representing physical laws

• Model the radioactive decay of 
• Model a damped oscillator to appreciate the impact of 

critical damping
• Simulate the Dynamical Kinematics of a Model Rocket 

through lift-off, where the system mass decreases as solid 
motor fuel is burnt to produce thrust

• Model the electrostatic field around the charged parallel 
plates inside a capacitor where the surrounding walls are 
conductors (fixed potential) or insulators (fixed charge)
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Solve ODEs with SciPy

• We often must numerically solve systems of differential 
equations so we can simulate dynamic models

• The Python package SciPy contains several ready-to-use 
numerical methods to estimate the solution to a variety of 
differential equations

• Ordinary and Partial Differential Equations (ODE/PDE)

• Linear and Non-Linear Differential Equations

• Initial Value Problem (IVP) and Boundary Value Problems 
(BVP)

• Both Individual and Systems of Linked Differential Equations
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Scientific Computing with Python
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https://scipy.org 

https://scipy.github.io/devdocs/tutorial/general.html


Modelling Nuclear Decay
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𝑁𝑁 𝑡𝑡 ≡ number of nuclei at time t

𝑑𝑑𝑁𝑁
𝑑𝑑𝑡𝑡

= −
𝑁𝑁(𝑡𝑡)
𝜏𝜏

𝜏𝜏 ≡ mean lifetime (half life)

𝑑𝑑𝑁𝑁
𝑑𝑑𝑡𝑡 =

𝑁𝑁 𝑡𝑡 + Δ𝑡𝑡 − 𝑁𝑁(𝑡𝑡)
Δ𝑡𝑡

−
𝑁𝑁(𝑡𝑡)
𝜏𝜏 =

𝑁𝑁 𝑡𝑡 + Δ𝑡𝑡 − 𝑁𝑁(𝑡𝑡)
Δ𝑡𝑡

𝑁𝑁 𝑡𝑡 + Δ𝑡𝑡 = 𝑁𝑁 𝑡𝑡 −
𝑁𝑁(𝑡𝑡)
𝜏𝜏 Δ𝑡𝑡

This is Euler’s Method

Fermat's Difference 
Quotient



Modelling Nuclear Decay
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𝑁𝑁 𝑡𝑡 ≡ number of nuclei at time t

𝜏𝜏 ≡ mean lifetime (half life)

𝑁𝑁 𝑡𝑡 + Δ𝑡𝑡 = 𝑁𝑁 𝑡𝑡 −
𝑁𝑁(𝑡𝑡)
𝜏𝜏 Δ𝑡𝑡

This is Euler’s Method



Runge-Kutta Methods

• Around 1900, two German mathematicians, Carl Runge and 
Wilhelm Kutta, wanted to improve the accuracy of Euler's 
Method

• Following the same motivation underlying Simpson's Rule 
for numerical integration, they developed a method of 
interpolating a curve between the endpoints of a sampled 
interval

• Using a weighted combination of tangent lines sampled 
throughout an interval, a more accurate derivative can be 
calculated than using the single tangent line in Euler's 
Method
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Runge-Kutta Methods
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Scientific Computing with Python
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Runge-Kutta-Fehlberg (RKF45)



Fluorine-18
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At least 5% of 
the injected 
Flourine-18 
must still be 

present to be 
detected



Fluorine-18
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Run fluroine18_decay.ipynb – Cells 1...2
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Run fluroine18_decay.ipynb – Cell 3
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Run fluroine18_decay.ipynb – Cell 4
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Run fluroine18_decay.ipynb – Cell 4
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Run fluroine18_decay.ipynb – Cell 5
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At least  of the 
injected Flourine-18 
must still be present 

to be detected

What  key concepts does this graph suggest?

1. After the ingested Fluorine-18 has 
decayed enough to not be a lingering threat

2. Medical staff must get patients into the PET 
scan within hours after taking Fluorine-18



Modelling a Simple Pendulum
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𝐹𝐹𝜃𝜃 = −𝑚𝑚𝑚𝑚 sin𝜃𝜃

𝐹𝐹 = 𝑚𝑚𝑚𝑚

𝐹𝐹 = 𝑚𝑚
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2

𝑠𝑠 = 𝑙𝑙𝜃𝜃

𝑑𝑑2𝑠𝑠
𝑑𝑑𝑡𝑡2 = 𝑙𝑙

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 𝐹𝐹𝜃𝜃 = 𝑚𝑚𝑙𝑙

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

𝑚𝑚𝑙𝑙
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= −𝑚𝑚𝑚𝑚 sin𝜃𝜃

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 = −

𝑚𝑚
𝑙𝑙 sin θ

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡 = 𝜔𝜔

𝑑𝑑𝜔𝜔
𝑑𝑑𝑡𝑡 = −

𝑚𝑚
𝑙𝑙 sin θ

𝑙𝑙

Gravity is a 
restoring force

We can break the 2nd 
order ODE into two linked 
first-order ODEs and use 

RKF45 on each

𝑠𝑠 = 0 when 𝜃𝜃 = 0

Take 2nd derivative of 
both sides with 
respect to time

𝑙𝑙 = length
of the rod 
(constant)

𝑠𝑠 = arclength 
along the 
perimeter 𝑔𝑔

𝑙𝑙
= Phase Constant



Damped Harmonic Oscillator
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We can introduce a new resistive force term 
into the equation of motion for a pendulum

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 = −𝑞𝑞

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡 −

𝑚𝑚
𝑙𝑙 sin θ

𝑞𝑞 = The damping constant

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡 = 𝜔𝜔

𝑑𝑑𝜔𝜔
𝑑𝑑𝑡𝑡 = −𝑞𝑞𝜔𝜔 −

𝑚𝑚
𝑙𝑙 sin θ

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= −
𝑚𝑚
𝑙𝑙

sin θ 𝑔𝑔
𝑙𝑙

= The phase constant



Damped Harmonic Oscillator

• Underdamped – The system swings back and forth (oscillates) 
over its equilibrium point, but ultimately comes to rest

= 1

• Overdamped – The system never oscillates, but it takes a 
while for it to return to its equilibrium point

=
𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡 2

2
• Critically damped – The system never oscillates and returns to 

its equilibrium point in the least amount of time

=
𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡 2

4
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Note: There is only one 
value for 𝒒𝒒 where the 

system is critically damped



Run damped_pendulum.ipynb – Cells 1...2
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Run damped_pendulum.ipynb – Cell 3
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Run damped_pendulum.ipynb – Cell 4
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Check damped_pendulum.ipynb – Cell 4
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Run damped_pendulum.ipynb – Cell 5
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Check damped_pendulum.ipynb – Cell 5
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In what applications would 
you want a system to be 

critically damped?
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Damped Harmonic Oscillator



Tuned Mass Dampers
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Taipei 101 – Taiwan
The Worlds Tallest Building 

(2004-2009)



Tuned Mass Dampers

28



Model Rocket

• This Model Rocket has two stages, with each stage 
containing its own F15 rocket motor

• After the 1st (booster) stage is ignited, the rocket will 
blast off and begin to rise using just the booster 
motor

• After the 1st stage motor burns out, the booster 
stage (with its spent motor) is ejected, the 2nd stage 
F15 motor ignites, and the rocket continues to 
ascend

• The 2nd stage and its motor remain part of the 
rocket throughout the duration of the flight
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Model Rocket

• The Stage 1 booster has a mass of 0.0519 kg (not 
including its F15 motor)

• The Stage 2 main rocket has a mass of 0.1729 kg 
(not including its F15 motor)

• An F15 model rocket motor has a mass of 0.101 kg, 
generates a thrust of 17.2 Newtons, and burns for 
1.6 seconds

• For this simulation, we will assume the thrust of a 
motor is constant throughout its burn, assume there 
is no delay between the ejection of the booster and 
the ignition of the Stage 2 motor, and ignore air 
friction
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Model Rocket

• We must model the trajectory of the rocket over the first four 
seconds of its flight: from liftoff to booster separation and into 
its unpowered glide phase

• We want to calculate the rocket’s mean velocity (mph) and 
altitude (feet) over time (seconds) and determine its average 
speed and maximum height through four seconds

• We will assume the mass of each motor reduces linearly 
throughout its burn (100% of mass at ignition and 0% of mass 
at moment of burnout)

• The force of gravity resisting the rocket is:

𝐹𝐹𝑔𝑔 =
𝐺𝐺 × 𝑀𝑀𝐸𝐸 × 𝑚𝑚
𝑅𝑅 + 𝑝 2
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𝑀𝑀𝐸𝐸 = 𝑀𝑀𝑚𝑚𝑠𝑠𝑠𝑠 𝑐𝑐𝑜𝑜 𝐸𝐸𝑚𝑚𝐸𝐸𝑡𝑡𝑝
𝑅𝑅 = 𝑅𝑅𝑚𝑚𝑑𝑑𝑅𝑅𝑅𝑅𝑠𝑠 𝑐𝑐𝑜𝑜 𝐸𝐸𝑚𝑚𝐸𝐸𝑡𝑡𝑝

𝐺𝐺 = 𝐺𝐺𝐸𝐸𝑚𝑚𝐺𝐺𝑅𝑅𝑡𝑡𝑚𝑚𝑡𝑡𝑅𝑅𝑐𝑐𝑐𝑐𝑚𝑚𝑙𝑙 𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡 𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑠𝑠𝑠𝑠 𝑐𝑐𝑜𝑜 𝐸𝐸𝑐𝑐𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡
𝑝 = 𝐻𝐻𝑝𝑝𝑅𝑅𝑚𝑚𝑝𝑡𝑡 𝑐𝑐𝑜𝑜 𝐸𝐸𝑐𝑐𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡



Run model_rocket.ipynb – Cells 1...2
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Run model_rocket.ipynb – Cell 3
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Run model_rocket.ipynb – Cell 4
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Run model_rocket.ipynb – Cell 5
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Run model_rocket.ipynb – Cell 6
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Check model_rocket.ipynb – Cell 6
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1st stage
booster

2nd stage
main

No single analytic equation 
can be derived that models 

the entire flight
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Hidden Figures, Fox 2000 Pictures, 2016

Runge-Kutta 
Method



Electrostatic Field Between Parallel Plates

• Model the electrostatic field around the charged parallel 
plates inside a capacitor where the surrounding walls are 
conductors (fixed potential) or insulators (fixed charge)

• Numerically estimate solutions to the Laplace 2nd order 
partial differential equation using both Neumann and 
Dirichlet boundary conditions

• Use a convolution kernel (a stencil) to perform Jacobi 
relaxation over a discretized grid
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Electrostatic Field in Parallel Plates
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Electrostatic Field in Parallel Plates
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𝐹𝐹 ∝
𝑞𝑞1𝑞𝑞2
𝐸𝐸2 ⟹ 𝐹𝐹 = 𝑟𝑟

𝑞𝑞1𝑞𝑞2
𝐸𝐸2

𝐹𝐹 =
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝐸𝐸2

𝑟𝑟 =
1

4𝜋𝜋𝜀𝜀0
 (𝐶𝐶𝑐𝑐𝑅𝑅𝑙𝑙𝑐𝑐𝑚𝑚𝑏𝑏′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡)

𝐶𝐶𝑐𝑐𝑅𝑅𝑙𝑙𝑐𝑐𝑚𝑚𝑏𝑏′𝑠𝑠 𝐿𝐿𝑚𝑚𝐿𝐿

𝑞𝑞 = Electric charge
ℰ0 = Permittivity 

of free space

𝐸𝐸 =
𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0

1
𝐸𝐸𝐴𝐴
−

1
𝐸𝐸𝐵𝐵

A as reference point ∴ 𝐸𝐸𝐵𝐵 = ∞

𝐸𝐸𝐴𝐴 =
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝐸𝐸𝐴𝐴

𝑊𝑊𝐴𝐴→𝐵𝐵 = �
𝐴𝐴

𝐵𝐵
𝐹𝐹 𝑑𝑑𝑠𝑠

𝐸𝐸 𝐸𝐸 =
𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0

�
𝐴𝐴

𝐵𝐵 1
𝐸𝐸2 𝑑𝑑𝐸𝐸

Electric Potential (Voltage)

q1

q2
A

B

�
1
𝐸𝐸2 = −

1
𝐸𝐸

−1
𝐸𝐸𝐵𝐵

−
−1
𝐸𝐸𝐴𝐴

=
1
𝐸𝐸𝐴𝐴
−

1
𝐸𝐸𝐵𝐵

Electrostatic Fields



Electric Field Potential Between Charges
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Electric Potential (V)
A scalar field

Electric Field (V/m)
A vector field?



Electric Field Potential Between Charges
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Electric Potential (V)
A scalar field

Electric Field (V/m)
A vector field𝐸𝐸 = −∇𝑉𝑉

The negative sign indicates 
that the electric field points 

towards a decreasing potential 

Physically, this means that a 
positive charge will naturally move 
from regions of higher potential to 

regions of lower potential



Electric Field Potential Between Charges
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Electric Potential (V)
A scalar field

Electric Field (V/m)
A vector field𝐸𝐸 = −∇𝑉𝑉

∇ � 𝐸𝐸 = −∇2𝑉𝑉 = 0 
For an electrostatic field (the field isn’t changing)



Electrostatic Field in Parallel Plates
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∇2𝑉𝑉 = 0

∇2𝑉𝑉 =
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

= 0

For a function to be static, it is not enough for the first derivative to 
be zero – think of the pendulum at the far left or right of its swing…

Its 2nd derivative must also be zero!

𝑉𝑉𝑖𝑖,𝑗𝑗 →
1
4
𝑉𝑉𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉𝑖𝑖−1,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗−1 = 0

𝑅𝑅 − 1 𝑅𝑅 𝑅𝑅 + 1

𝑗𝑗 − 1

𝑗𝑗

𝑗𝑗 + 1

Discretization
over a 2D Grid

2D Continuous



Electrostatic Field in Parallel Plates
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∇2𝑉𝑉 = 0

∇2𝑉𝑉 =
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑉𝑉
𝜕𝜕𝑦𝑦2

= 0

For a function to be static, it is not enough for the first derivative to 
be zero – think of the pendulum at the far left or right of its swing…

Its 2nd derivative must also be zero!

𝑉𝑉𝑖𝑖,𝑗𝑗 →
1
4
𝑉𝑉𝑖𝑖+1,𝑗𝑗 + 𝑉𝑉𝑖𝑖−1,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗+1 + 𝑉𝑉𝑖𝑖,𝑗𝑗−1 = 0Discretization

over a 2D Grid

2D Continuous

0 ⁄1 4 0
⁄1 4 0 ⁄1 4
0 ⁄1 4 0

A convolution kernel (stencil)



Electrostatic Field in Parallel Plates

• If we apply the convolution of the kernel to successive 
overlapping 3 x 3 swatches of the field grid (across both the x 
and y dimensions), we will find the “next in time” value of the 
electric field for each point in the grid

• A convolution involves multiplying each cell in the 3 x 3 kernel with 
the corresponding cell in the current swatch location (within the grid) 
and then summing those nine products

• We convolve the entire 2D field grid with the kernel enough times to 
ensure every “next in time” grid cell value is equal to its “prior in 
time” grid cell value – meaning there is no change over time

• When this condition is realized, we have reached a steady 
state and therefore have an electrostatic field. This iterative 
approach is called the Jacobi Relaxation Method
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Electrostatic Field in Parallel Plates

• With ordinary differential equations (ODEs), we must specify 
the initial conditions for an exact solution. We must specify 
boundary conditions with partial differential equations (PDEs) 

• In our simulation of the electrostatic field around parallel 
plates, we have two choices for boundary conditions:

• Neumann boundary conditions: the plates are surrounded by walls of 
conductors, thus preventing any electric potential from building up 
along the walls, so the cells around the outermost edges of the grid are 
forced to maintain the same field strength as their neighboring cells. 
This makes a zero gradient along the walls

• Dirichlet boundary conditions: the plates are surrounded by walls of 
insulators, thus preventing any electric charge from building up along 
the walls, so the cells around the outmost edges of the grid are forced 
to maintain a zero voltage
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Run electrostatic_fields.ipynb – Cells 1...2

50



Run electrostatic_fields.ipynb – Cell 3
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Run electrostatic_fields.ipynb – Cell 4
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Run electrostatic_fields.ipynb – Cell 4
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Run electrostatic_fields.ipynb – Cell 5
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Check electrostatic_fields.ipynb – Cell 5
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Run electrostatic_fields.ipynb – Cell 6
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Run electrostatic_fields.ipynb – Cell 7
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Session 04 – Now You Know…

• Use SciPy to simulate numerical solutions to ordinary 
differential equations (ODEs) representing physical laws

• Model the radioactive decay of 
• Model a damped oscillator to appreciate the impact of 

critical damping
• Simulate the Dynamical Kinematics of a Model Rocket 

through lift-off, where the system mass decreases as solid 
motor fuel is burnt to produce thrust

• Model the electrostatic field around the charged parallel 
plates inside a capacitor where the surrounding walls are 
conductors (fixed potential) or insulators (fixed charge)

58



59

THANK YOU!


	Slide Number 1
	Session 04 – Topics
	Solve ODEs with SciPy
	Scientific Computing with Python
	Modelling Nuclear Decay
	Modelling Nuclear Decay
	Runge-Kutta Methods
	Runge-Kutta Methods
	Scientific Computing with Python
	Fluorine-18
	Fluorine-18
	Run fluroine18_decay.ipynb – Cells 1...2
	Run fluroine18_decay.ipynb – Cell 3
	Run fluroine18_decay.ipynb – Cell 4
	Run fluroine18_decay.ipynb – Cell 4
	Run fluroine18_decay.ipynb – Cell 5
	Modelling a Simple Pendulum
	Damped Harmonic Oscillator
	Damped Harmonic Oscillator
	Run damped_pendulum.ipynb – Cells 1...2
	Run damped_pendulum.ipynb – Cell 3
	Run damped_pendulum.ipynb – Cell 4
	Check damped_pendulum.ipynb – Cell 4
	Run damped_pendulum.ipynb – Cell 5
	Check damped_pendulum.ipynb – Cell 5
	Damped Harmonic Oscillator
	Tuned Mass Dampers
	Tuned Mass Dampers
	Model Rocket
	Model Rocket
	Model Rocket
	Run model_rocket.ipynb – Cells 1...2
	Run model_rocket.ipynb – Cell 3
	Run model_rocket.ipynb – Cell 4
	Run model_rocket.ipynb – Cell 5
	Run model_rocket.ipynb – Cell 6
	Check model_rocket.ipynb – Cell 6
	Slide Number 38
	Electrostatic Field Between Parallel Plates
	Electrostatic Field in Parallel Plates
	Electrostatic Field in Parallel Plates
	Slide Number 42
	Electric Field Potential Between Charges
	Electric Field Potential Between Charges
	Electric Field Potential Between Charges
	Electrostatic Field in Parallel Plates
	Electrostatic Field in Parallel Plates
	Electrostatic Field in Parallel Plates
	Electrostatic Field in Parallel Plates
	Run electrostatic_fields.ipynb – Cells 1...2
	Run electrostatic_fields.ipynb – Cell 3
	Run electrostatic_fields.ipynb – Cell 4
	Run electrostatic_fields.ipynb – Cell 4
	Run electrostatic_fields.ipynb – Cell 5
	Check electrostatic_fields.ipynb – Cell 5
	Run electrostatic_fields.ipynb – Cell 6
	Run electrostatic_fields.ipynb – Cell 7
	Session 04 – Now You Know…
	Slide Number 59

