The African School of Fundamental Physics and Applications

Integrating Scientific Computing into Math and Science Classes

Dave Biersach Brookhaven National Laboratory <u>dbiersach@bnl.gov</u>

Session 01 Algebra, Statistics, and Trigonometry

Welcome!

- My name is **Dave Biersach**
- I am a Senior Technology Architect at BNL
- I am a 1989 graduate of the United States Military Academy, and I served in the 1991 Persian Gulf War as a Combat Engineer Officer
- I received a Ph.D. in Computational Physics at the Naval Postgraduate School in California
- I have worked for decades at Microsoft & Pfizer
- I have been married for 33 years, have three adult children, and have taught teachers and professors for the past 15 years

Get the Slides

Click on this link: <u>ASP-HS Slides</u>

The US Department of Energy

National Nuclear Safety Administration

About Brookhaven National Laboratory

Who We Are

Brookhaven National Laboratory is a multipurpose research institution funded primarily by the U.S. Department of Energy's Office of Science. Located on the center of Long Island, New York, Brookhaven Lab brings world-class facilities and expertise to the most exciting and important questions in basic and applied science—from the birth of our universe to the sustainable energy technology of tomorrow. We operate cutting-edge large-scale facilities for studies in physics, chemistry, biology, medicine, applied science, and a wide range of advanced technologies. The Laboratory's almost 3,000 scientists, engineers, and support staff are joined each year by more than 4,000 visiting researchers from around the world. Our award-winning history stretches back to 1947, and we continue to unravel mysteries from the nanoscale to the cosmic scale, and everything in between.

About Brookhaven National Laboratory

YouTube - This is Brookhaven Lab

What is Scientific Computing?

- Scientific computing problems cannot be solved using just a graphing calculator or a spreadsheet program
 - A computer should not be viewed as just another closed-form benchtop instrument with fixed functionality
 - SciComp does not require writing thousands of lines of code to answer problems – complete code usually fits on one slide!
- SciComp is applied computer science
 - The first name of CompSci is *computer*
 - The first name of SciComp is science
 - A triple helix of math, science, and computing

SciComp vs CompSci

Scientific Computing

- Probability and Statistics
- Simulation and Modelling
- Data Visualization
- Storing and Analyzing Very Large Datasets
- Parallel & Distributed Algorithms
- Speed and Accuracy Paramount
- Functional Languages
- Open-Ended Problems with Unknown Solutions

Computer Science

- General Data Structures
- Design Methodologies
- Procedural Languages
- Stand-Alone Programs
- Emphasis on Object-Orientation
- Simple Data Models
- Sequential Algorithms
- Less Graphics Intensive
- Directed Closed-Form Problems with Known Solutions

Example SciComp Topic Multidimensional Interpolation

Example SciComp Topic Multidimensional Interpolation

A first order 3-D approximation of the ocean floor based upon only 220 sample (red) points (sonar timings)

SciComp As Translational Science

11 lines of code can change the world!

SciComp is the ability to translate mathematical expressions of scientific concepts into correct and efficient software code

SciComp 101 Foundations of Scientific Computing

- Packaged as 20 high school lessons with hands-on student programming labs using the free Google Colab service
 - BNL provides all required presentations, sample code, lab exercises, and teacher guide
 - The software tools are 100% open-source and free of charge
 - The students can use Windows, Apple Mac, or Chromebooks
- The lessons are split into three 20-minute sections
 - The last 20-minute section in each session is optional & not required for pedagogical continuity
 - This structure enables sessions to be delivered within a high school science or math course if limited to a 40-minute class period

SciComp 101 Foundations of Scientific Computing

- Objectives
 - Provide patterns for solving real-world science problems by writing custom software
 - Demonstrate how scientific computing impacts all science disciplines
 - Enable students to translate scientific formulas into correct and efficient code
 - Review techniques for the **effective visualization** of complex data
 - Show optimal methods to store and analyze very large data sets
 - Prepare students to conduct interdisciplinary research at worldclass institutions

SciComp = The <u>Pathway</u> to Internships

Find jobs Company reviews Find salaries		Upload your resume Sign		
What scientific computing Whet Date Posted • Remote • Salary Estimate • lob Type •	City, state, tip-code, or "remote"	Company Experience Level		
Upload your resume - Let employers find you	Be the first to see new scientific	Oak Ridge National Laboratory (162)		
scientific computing jobs Sort by: relevance - date Page 1 of 3,979 jobs ⑦	Email address	Jacobs (134) Amazon.com Services LLC (79)		
Data Scientist/Bioinformatician - Scientific Computing	Activate	Hudson River Trading (74) Duke Careers (69)		
 New York, NY 10029 (East Harlem area) A position is available for an individual with skills in data science, bioinformatics and software engineering to play the 	By creating a job alert, you agree to our <u>Terms</u> . You can change your consent settings at any time by unsubscribing or as detailed in our terms.	Thermo Fisher Scientific (68) Johnson & Johnson Family of		
key role in running and managing the 5 days ago · More		Companies (66) Argonne National Laboratory (64)		
Quantum Computing Scientist Brookhaven National Laboratory 4.2*		Facebook (49)		
 Develop proficiency with using quantum computing platforms and/or simulators. 		Amazon Dev Center U.S., Inc. (46)		
 Through modeling, simulation, and analysis of experimental data the successful 30+ days ago · More 		DEVCOM Army Research Laboratory (40)		
new :		Lawrence Berkeley National Laboratory (35)		
Sciencine computing Engineer		NVIDIA (34)		

Writing Code for a More Skilled and Diverse STEM Workforce

Twenty science, technology, engineering, and mathematics (STEM) undergraduates funded by the National Science Foundation's Louis Stokes Alliances for Minority Participation program came to Brookhaven Lab this summer for a new three-week workshop to develop their scientific computing skills

September 6, 2018

You can lead the world!

Goøgle	high school scientific computing
	Q All I News I Images I Videos ⊘ Shopping I More Ser Your school
	About 121,000,000 results (0.54 seconds)
	New Brookhaven Summer Course Introduces High School Studen Google!
	Aug 6, 2015 - Dave Biersach, a senior technology engineer at Brookhaven, taught 19 local high school students the foundations of scientific computing.
	Students Complete Scientific Computing Course - Longwood Central longwood.k12.ny.us/district_news/students_complete_scientific_computing_course ▼ May 9, 2019 - LHS Students Complete BNL Scientific Computing Course Twelve Longwood High School students recently completed a 20-week scientific
	bnl scientific computing seminar - Sayville Public Schools https://www.sayvilleschools.org/Page/5142 ▼ Up to Thirty (30) Sayville students from grades 9-12 can be selected to learn the core scientific computing skills. The Program will take place at the High School
	Brookhaven Lab, Adelphi launch scientific computing minor – Long https://libn.com → News → Education マ May 14, 2019 - Biersach helped to address this challenge by launching a series of after-school scientific computing clubs at high schools on Long Island, from

Mathematical Concepts

- Systems of Equations
- Probability Distributions
- Combinatorics
- Simulation & Modeling
- Monte Carlo Integration
- Polar & Spherical Coordinates
- Dynamical Systems
- Mesh Interpolation
- 2D Affine Transformations
- Vector & Complex Algebra
- Signals Analysis

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots = \frac{\pi^2}{6}$$

Computer Science Concepts

- Representations and Encodings
- Random Number Generation
- Strings, Arrays, Operators
- Loops, Functions, Recursion
- Searching & Sorting
- 2D and 3D Graphics
- Accuracy & Precision
- Runtime Complexity
- File I/O (CSV)

Correct Sampling

Science Concepts

- Mechanics and Kinematics
- Waves (Nyquist Sampling)
- Unit Conversion
- Genetic Sequence Analysis
- Balancing Ionic Equations
- Projectile Motion
- Equilibrium & Thermodynamics
- Radioactive Decay

 $10P_2I_4 + 13P_4 + 128H_2O \rightarrow 40PH_4I + 32H_3PO_4$

Scientific Computing with Python

- Python is quickly becoming one of the most heavily used languages in science projects
- Python runs on all major modern operating systems and is completely free and open-source (not vendor controlled)
- Python makes it easy for your code to directly integrate with a large spectrum of available 3rd party software
- Python code runs consistently on different platforms and scales well from small IoT devices to large server clusters
- Python benefits from a very active and growing user community that continues to enhance the language

Motivation

- Every high school science research project can benefit from even just a slight touch of scientific computing
 - Better statistics & data visualization on posters
 - Compelling analysis from modeling & simulation
 - Novel integration of computation is a big *differentiator!*
- The lab exercises we have developed are taken directly from active research projects at BNL
 - We all learned how to *read* before we learned how to *write* many junior BNL staff inherit existing code to fix or extend
 - More than 80% of all summer research projects at BNL require high school interns to <u>write code</u>

Motivation

- It does not take thousands of lines of code to keep importance science moving right along...
 - You don't have to be a professional programmer or know all the arcane aspects of computer languages
 - The closer you get to **cutting edge science**, the less likely you'll be able to just "download an app" to accomplish what you need
- If you don't know how to code...
 - You will at some point start to *subconsciously* limit the types of analysis you can perform because you will remain at the mercy of the available software
 - Should software shape your science, or instead, will you shape software to **advance** your science?

Click on this link: <u>asp-hs-init.ipynb</u>

Your web browser should then display this page:

PRC	▲ asp-hs-init.ipynb ☆ File Edit View Insert Runtime Tools Help Last saved at 3:46 PM	Comment	Ľ	Share	¢ (6
≣	+ Code + Text	Connec	t 🔻	🔶 Ge	emini	^
Q	from google.colab import drive	$\uparrow \downarrow 0$	9 E	•		:
$\{x\}$	<pre>!git clone <u>https://github.com/dbiersach/asp-hs</u> "/content/gdrive/M</pre>	y Drive/as	p-hs"			
©⊒	Click the "Run" (play) button to exec	ute				
	this cell in the notebook					

PRO	o A asp-hs-init.ipynb ☆
:=	+ Code + Text $\sim \frac{RAM}{Disk}$ + Gemini
Q { <i>x</i> }	<pre></pre>
Сī	
	Permit this notebook to access your Google Drive files? This notebook is requesting access to your Google Drive files. Granting access to Google Drive will permit code executed in the notebook to modify files in your Google Drive. Make sure to review notebook code prior to allowing this access. No thanks
<>	Click "Connect to Google Drive"
==	
►	
•	Executing (13s) <cell 2="" line:=""> > mount() > _mount() > blocking_request() > read_reply_from_input() ···· ×</cell>

G Sign in - Google Accounts - Google Chrome

0 X

- accounts.google.com/signin/oauth/id?authuser=0&part=AJi8hAOv7euHOH9IXSKQpc...
- G Sign in with Google

Sign in to Google Drive for desktop

By continuing, Google will share your name, email address, language preference, and profile picture with Google Drive for desktop. See Google Drive for desktop's Privacy Policy and Terms of Service.

You can manage Sign in with Google in your Google Account.

G Sign in - Google Accounts - Google Chrome

×

accounts.google.com/signin/oauth/v2/consentsummary?as=S-1609761527:1713810317711731&a...

G Sign in with Google

Google Drive for desktop wants additional access to your Google Account

dbiersach@gmail.com

Google Drive for desktop already has some access

See the 8 services that Google Drive for desktop has some access to.

Make sure you trust Google Drive for desktop

You may be sharing sensitive info with this site or app. Learn about how Google Drive for desktop will handle your data by reviewing its terms of service and privacy policies. You can always see or remove access in your Google Account.

Click Continue

Continue

Cancel

PR	⊃	sp-hs-init.ipynb 📩 Edit View Insert Runtime	Tools Help	DBGitHub https://github.com/dbi	ersach mment	🖹 Share	۵ (01
≣	+ Code	e + Text			V RAM Disk	▼ + G	emini	^
Q { <i>x</i> }	✓ 48s O	<pre>from google.colab import d from google.colab import d frive.mount('/content/gdr git clone https://github</pre>	drive <mark>ive</mark> ') .com/dbiersach/asp-hs	"/content/gdrive/	↑ ↓ ↔	ت ت ا	<u>,</u> 0	:
57 []	[] *]	Mounted at /content/gdrive Cloning into '/content/gdr remote: Enumerating objects: remote: Counting objects: remote: Compressing object remote: Total 45 (delta 10 Receiving objects: 100% (4 Resolving deltas: 100% (10	e rive/My Drive/asp-hs' ts: 45, done. 100% (45/45), done. ts: 100% (36/36), done 0), reused 37 (delta 8 45/45), 76.12 KiB 3 0/10), done.	e. 8), pack-reused 0 .81 MiB/s, done.				
			The notebook the GitHub Rep your Googl	will clone pository to e Drive				×

V A My Drive - Google Drive X	+			- 0	×
← → C 🖙 drive.google.com	/drive/my-drive		다 🖈	<mark>노</mark> 한 (🚱 :
🛆 Drive	Q Search in Drive		2) 🕸 🏭	
+ New	My Drive -		✓≡	#	31
Home	Type 👻 People	✓ Modified ▼			
• 🖸 My Drive	Name 🔨		Last mo 🔻	:	Ø
• _ Computers	→ asp-hs		4:00 PM	1	
😩 Shared with me					-
C Recent	SciComp101-GC		Apr 22, 2024		
🕁 Starred	SciCo	Return to your Google	e Drive:		+
O Spam	asp-hs	ps://drive.google.com/di	rive/my-c	drive	
🔟 Trash					
Storage	🗢 asp hi	You should now see a fol	der calle	d	
2.13 GB of 15 GB used	📄 Manaç	asp-hs			
		Double-click that folder	to open i	t 🛛	

▲	asp-hs - Google Drive 📻	▼ ⊥		- 0 X
← →	C C drive.go	Double-click on the <u>folder</u> Session 01 – Algebra, Statistics and Trigonometr	· γ 🛱 🖾 ε	5 🎯 :
	Drive	Q Search in Drive ∓	S () \$	III 🎯
+	New	My Drive > asp-hs -		i) 🗾
â	Home	Type 🔹 People 👻 Modified 👻		
• 4	My Drive	Name 1 Last	t mo 🔻	: 🞯
• 🗖	Computers			
0	Channed with me	.git 4:00) PM	:
ă	Shared with me	Session 01 - Algebra Statistics and Trigonometry 4:00		:
Q	Recent	Session of - Algebra, Statistics, and Highlometry		·
☆	Starred	Session 02 - Calculus and Monte Carlo Methods 4:00	D PM	÷ +
()	Spam	Session 03 - Computing in Science 4:00	D PM	:
Ū	Trash			
\bigcirc	Storage	Session 04 - Differential Equations 4:00) PM	:
2.13	GB of 15 GB used	.gitignore 4:00	D PM	:

Session **01** – Topics

- Create numerical arrays and plot polynomials
- Estimate and plot infinite series to visualize convergence
- Calculate Euclid's GCD (HCF) of pairs of random integers
- Calculate the 2nd central moment of **uniform distributions**
- Demonstrate Euler's Identity for Complex Numbers
- Use Polar Coordinates to draw parametric curves and 2D random walks
- Plot the superposition of two waves to create traveling and standing waves
- Use trigonometry to draw a 3D sphere and torus

Extending Python via the numpy Package

https://numpy.org

Numpy Arrays

- An **array** is a set of *elements* having all the same **type**
- An individual element in an array is accessed by using its index number within square [] brackets
 - Every element has a unique index number
 - No two elements share the exact same index number
 - The first element has an index = 0
- The function **size()** returns the *length* of an array, which is the number of elements in the array
- The *last* element in an array at [size() 1]

Index Number versus Element Value

A Numpy Linearly Spaced Array

np.linspace() figures out the *step* size based on the range of the linear space and the number of elements you request

[6]

Numpy Vectorized Operations

a * b

a[n]*b[n]

A **vectorized** scalar operation applies a function to every element in a *single* array (to each individual cell) A **vectorized** array operation applies a function to elements in *both* arrays that have the same <u>index</u> value
Line Graphs using matplotlib

• Your scientist has asked you to plot the following two functions:

$$y_1 = 2x - 5 y_2 = -0.3x^2 + 15$$

- The domain for both functions is $-10 \le x \le 10$
- You should plot both curves on the same graph

https://matplotlib.org

matpletlib Version 3.3.3					
Installation Documentation Examp	oles Tutorials Contributing				
home contents » Matplotlib: Python plotti	ng				
Matplotlib: Visualization with Python Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.					
Matplotlib makes easy things easy and hard things possible.					
Create	Customize	Extend			
 Develop publication quality plots with just a few lines of code Use interactive figures that can zoom, pan, update 	 Take full control of line styles, font properties, axes properties Export and embed to a number of file formats and interactive environments 	 Explore tailored functionality provided by third party packages Learn more about Matplotlib through the many external learning resources 			
Documentation					

Trying to learn how to do a particular kind of plot? Check out the examples gallery or the list of plotting commands.

Matplotlib Container Hierarchy

Cartesian Coordinates

Created by René Descartes in 1637

Open line_graphs.ipynb

 I 	asp-hs - Home 🗙 🗙	🛆 Session 01 - Algebra, Statistics, 🗙 🕂			- 0 ×
\leftarrow	C C drive.google.com	/drive/folders/109V3f6uPuQUTGZgbs_vOQpA8Kil_6IKA		다 ☆ 🛃	ት 🎯 ፡
4	Drive	Q Search in Drive			9 ::: 🎯
+	New	My Drive > asp-hs > Session 01 - A	lgebra, Sta 🝷	✓ = #	i 📑
â	Home	× 1 selected :			
, (My Drive	Name 1	Owner	Last mo 🔻	: Ø
۰Lo	Computers	basel_series.ipynb	🎯 me	4:00 PM	
2 ()	Shared with me Recent	coprime_probability.ipynb	💮 me	4:00 PM	:
☆	Starred	euler_identity.ipynb	💮 me	4:00 PM	: +
0	Spam	▶ line_graphs.ipynb	🎯 me	4:02 PM	:
	Trash	plot_circle.ipynb	ime me	4:00 PM	:
2.13	GB of 15 GB used	plot_rose_curves.ipynb	e me	4:00 PM	:

Double-click on a notebook to open it

Run line_graphs.ipynb – Cell 1

PRC	Iine_graphs.ipynb ☆ File Edit View Insert Runtime Tools Help Last saved at 4:02 PM	🛋 Comment 🛛 🟩 Share 🌼 🎯			
≣	+ Code + Text	✓ RAM → Gemini ∧			
Q	Import matplotlib and numpy				
{ <i>x</i> }	↔ 🖸 # Cell 1 ← 🕕				
ତଙ୍କ	import matplotlib.pvplot as plt Run cell (Ctrl+Enter) cell executed since last change				
	Create an array x spanning $-10 \le x \le 10$				
	Click the "Run" (play) button to this cell in the notebook	execute			

Run line_graphs.ipynb – Cells 1...2

Run line_graphs.ipynb – Cells 3...4

Run line_graphs.ipynb – Cell 5

Infinite Series (Sums)

$$y_1 = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots$$

- This sum is called the Harmonic series
- Does the Harmonic series converge to a single value or diverge (grow without bounds)?

$$y_2 = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \cdots$$

- This sum is called the **Basel series**
- Find the value of $\sqrt{6y_2}$ when n = 100,000

Run basel_series.ipynb – Cells 1...3

Run basel_series.ipynb – Cell 4

Run basel_series.ipynb – Cells 5...6

The sum of n cubed equals the sum squared of n

The Basel Problem

Leonhard Euler (1707 – 1783)

288 years later, we still do not know the exact value of

$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$

Greatest Common Divisor (GCD)

Example: What is the GCD of 231 and 182? In step 0, A is always greater than or equal to B. In steps 1 and beyond, the A value is the *greater* of the prior step's B or (A-B) values. The B value is the *lesser* of either the prior step's B or (A - B) values. The algorithm stops when A - B = 0, and the GCD was the very last B value. Follow along with each step in the table below:

Finding the GCD of 231 and 182				
Step	A	В	A - B	
0	231	182	49	
1	182 🗡	49	133	
2	133 🗲	49	84	
3	84 🗲	49	35	
4	49 🚄	35	14	
5	35	14	21	
6	21 🔶	14	7	
7	14 🧖	7	7	
8	7	7	0	

What divides A and B must also divide the *difference* of A - B Why? Given {A, B, a, b, r} ∈ ℤ

$$A = a * r, B = b * r$$

$$(\boldsymbol{A} - \boldsymbol{B}) = \boldsymbol{a} * \boldsymbol{r} - \boldsymbol{b} * \boldsymbol{r}$$

$$a - b = \frac{(A - B)}{r}$$

Coprime Probability

- Your scientist needs you to write a program to *estimate* the probability *p* that any two positive random integers are coprime
- Two numbers are **coprime** if they share **no common factors**
- For example, the numbers 6 and 35 are **not prime** because $6 = 2 \times 3$ and $35 = 5 \times 7$
- However, when compared to each other, 6 and 35 are coprime because they share no common factors
- She wants you to sample one million pairs of random integers between one and one million inclusive
- She wants to know the value of $\sqrt{\frac{6}{p}}$

Run coprime_probability.ipynb – Cells 1...2

Run coprime_probability.ipynb – Cells 3...4

If GCD(a, b) == 1
then a and b are
coprime

Probability is the number of times something **did happen** *divided* by the number of times it **could have happened**

Computing with Random Numbers?

Euler noticed things that many others did not...

- Your scientist needs a program that can:
 - Generate 15 sets of random sizes between 10,000 and 200,000 items
 - Within each set, every item is a random integer chosen within a range between a random **lower limit** and a random **upper limit**
 - The lower limit for each set is a random number between 0 and 10,000
 - The **upper limit** is that set's lower limit **plus** another random number between 0 and 100,000
 - Calculate the mean (μ) and variance (σ^2) for each set's <u>population</u>

$$\sigma^{2} = \frac{1}{n} \sum_{i=i}^{n} (x_{i} - \mu)^{2} \text{ where } \mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

- The research goal is to determine if a magic number hides within <u>all</u> *uniform* random number distributions
 - Calculate and display this "constant" for each set:

 $Magic Number = \frac{(upperLimit - lowerLimit)^2}{variance}$

- Is this number the same for ALL uniform distributions?
- Can we use this value to test if dice are loaded?

Run uniform_variance.ipynb – Cells 1...2

Run uniform_variance.ipynb – Cell 3

59

Trial #	Lower	Upper	Size	Mean	Variance	Magic
1	2,186	97,609	100,308	50061.375	763204878.817	11.931
2	2,456	41,355	83,467	21981.261	125285980.368	12.077
3	832	18,461	65,817	9648.839	25938232.503	11.982
4	4,233	42,165	31,918	23231.598	119992088.765	11.991
5	8,879	91,012	160,019	49962.086	563505796.451	11.971
6	1,765	87,215	140,124	44436.213	606677745.464	12.036
7	1,549	43,086	23,841	22178.161	143154389.004	12.052
8	8,587	105,157	130,589	56981.826	777105956.238	12.001
9	7,127	89,418	37,812	47946.706	568515233.060	11.911
10	1,265	11,018	102,292	6142.628	7955048.841	11.957
11	6,830	74,990	132,704	40882.409	386369369.576	12.024
12	9,786	27,604	148,185	18702.335	26342315.791	12.052
13	963	10,211	14,035	5572.470	7251379.077	11.794
14	5,717	9,443	23,348	7581.759	1146793.735	12.106
15	2,533	29,988	135,261	16234.108	62987583.045	11.967

- Every set had a different lower and upper limit, size, mean, and variance... yet the magic number was ~12 for all of them!
- Why would Mother Nature choose 12 for this magic number? What is so special about 12? Why not pick a nice even 10?
- Boundless natural curiosity is what makes a good scientist...

$$\sigma^{2} = \frac{1}{n} \sum_{i=i}^{n} (x_{i} - \mu)^{2}$$
 where $\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$

The *expected* value (\mathbb{E}) of a random variable Xis its <u>mean</u> value (μ)

$$\mathbb{E}(X) = \mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

The *expected* value (\mathbb{E}) returns a **constant** value

The *expected* value (E) of a **constant** value returns that same value Variance (σ^2) is the <u>mean</u> difference *squared* between every **X** and its $\mathbb{E}(X)$

$$\sigma^2 = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$

 $E(X) = \mu$ $E(X) = \mu$ E(E(X)) = E(X) $E(X) = \mu$ $E(X) = \mu$ $E(X) = \mu$

$$\sigma^{2} = \frac{1}{n} \sum_{i=i}^{n} (x_{i} - \mu)^{2} \text{ where } \mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\mu = \mathbb{E}(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\sigma^2 = \mathbb{E} \left[\left(X - \mathbb{E}(X) \right)^2 \right]$$
$$\mathbb{E}(\mu) = \mu$$
$$\mathbb{E}(\mathbb{E}(X)) = \mathbb{E}(X)$$

Faster because only <u>one</u> subtraction is required!

$$- \sigma^2 = \left(\frac{1}{n}\sum_{i=1}^n x_i^2\right) - \mu^2$$

$$\sigma^{2} = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^{2}\right] \quad \text{FOIL}$$

$$\sigma^{2} = \mathbb{E}\left[X^{2} - 2X\mathbb{E}(X) + \mathbb{E}(X)^{2}\right]$$

Note: $\mathbb{E}(x)$ is a distributive linear operator

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(2X\mathbb{E}(X)) + \mathbb{E}(\mathbb{E}(X)^{2})$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)\mathbb{E}(X) + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - 2\mathbb{E}(X)^{2} + \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

 $f(\mathbf{c}) =$ the average value of the function

Random Variable (Uniform Distribution)

Discrete:

$$\mathbb{E}(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$\mathbb{E}(X) = \frac{1}{(b-a)} \int_a^b x \, dx$$

n

Continuous:

Mean Value Theorem (Integrals)

 $Area_{red} = Area_{curve}$

$$Area_{red} = f(c) \times (b - a)$$
$$Area_{curve} = \int_{a}^{b} f(x) dx$$

$$f(c) \times (b-a) = \int_{a}^{b} f(x) \, dx$$

$$f(c) = \frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx$$

$$f(c) = \mu = \mathbb{E}(X)$$

Moment Generating Functions

$$\mathbb{E}(X) = \frac{1}{(b-a)} \int_{a}^{b} x dx$$
$$\mathbb{E}(X^{2}) = \frac{1}{(b-a)} \int_{a}^{b} x^{2} dx$$
$$\sigma^{2} = \mathbb{E}(X^{2}) - \mu^{2}$$

$$\mu = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{1}{b-a} \left(\frac{x^{2}}{2} \Big|_{a}^{b} \right) = \frac{b+a}{2}$$

$$\mathbb{E}(X^2) = \frac{1}{b-a} \int_a^b x^2 \, dx = \frac{1}{b-a} \left(\frac{x^3}{3} \Big|_a^b \right) = \frac{b^2 + ab + a^2}{3}$$

$$\mathbb{E}(X) = \frac{1}{(b-a)} \int_{a}^{b} x \, dx$$

$$\mathbb{E}(X) = \frac{1}{(b-a)} \int_{a}^{b} x \, dx$$

$$\mathbb{E}(X) = \frac{1}{(b-a)} \int_{a}^{b} x^{2} \, dx$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{1}{b-a} \left(\frac{x^{2}}{2}\Big|_{a}^{b}\right) = \frac{b+a}{2}$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\Big|_{a}^{b}\right) = \frac{b^{2} + ab + a^{2}}{3}$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\Big|_{a}^{b}\right) = \frac{b^{2} + ab + a^{2}}{3}$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\Big|_{a}^{b}\right) = \frac{b^{2} + ab + a^{2}}{3}$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\Big|_{a}^{b}\right) = \frac{b^{2} + ab + a^{2}}{3}$$

$$\mathbb{E}(X^{2}) = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{1}{b-a} \left(\frac{x^{3}}{3}\Big|_{a}^{b}\right) = \frac{b^{2} + ab + a^{2}}{3}$$

$$\mathbb{E}(X^{2}) = \frac{b^{2} + ab + a^{2}}{3} - \left(\frac{b+a}{2}\right)^{2} = \frac{(b-a)^{2}}{12}$$

ſ

Variance

Create a Numpy Array from a Range

Creates a "street" of mailboxes where the value inside each mailbox follows the requested range

The *default values* are **start** = **0** and **step** = **1** The stop value is <u>exclusive</u>

Complex Numbers

b

→ a

Real

arg

а

 $r \sin(\theta)$

х

θ

Complex Algebra Sum: (4 + 3i) + (5 - 4i) = (4 + 5) + (3 - 4)i= 9 - i

Difference:
$$(4 + 3i) - (5 - 4i) = (4 - 5) + (3 - (-4))i$$

= $-1 + 7i$

Complex Algebra

Division:
$$\frac{(4+3i)}{(5-4i)}$$
$$\frac{(4+3i)}{(5-4i)} = \underbrace{(4+3i)}_{(5-4i)} \times \underbrace{(5+4i)}_{(5+4i)} = \frac{(8+31i)}{41}$$
$$\underbrace{(5-4i)}_{Complex \ Conjugate} = \frac{8}{41} + \frac{31}{41}i$$

Euler's Identity

• Calculate an approximation of e^z where $z \in \mathbb{C}$, using its Taylor Series expansion to 20 terms

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \frac{z^{5}}{5!} + \frac{z^{6}}{6!} + \frac{z^{7}}{7!} + \cdots$$

• Use the above *power series* to display the value of $e^{\pi i}$

$$(e^z where z = 0 + \pi i)$$

- Notice the *denominators* grow at a factorial rate
- Fortunately, in Python the size of an integer is not restricted to a fixed number of number of bits
- In Python an int can expand in size to the limit of the available memory!

Run euler_identity.ipynb – Cells 1...3

Run euler_identity.ipynb – Cells 4...5

Run euler_identity.ipynb – Cells 6...7

Euler's Identity

 $e^{\pi i} = -1$ $e^{\pi i} + 1 = 0$

Euler

Euler's Identity

$e^{\pi i} + 1 = 0$

Google	most beautiful equation in mathematics X 🎍 🤉
	Q All ⊑ Images
	About 9,760,000 results (0.82 seconds)
	Euler's identity A poll of readers conducted by The Mathematical Intelligencer in 1990 named Euler's identity as the "most beautiful theorem in mathematics". In another poll of readers that was conducted by Physics World in 2004, Euler's identity tied with Maxwell's equations (of electromagnetism) as the "greatest equation
	ever . en.wikipedia.org > wiki > Euler's_identity
	Was this useful? Ves No
	More about Euler's identity

$$i^i = ?$$

$$(a^b)^c = a^{bc}$$

 $(2^3)^4 = 2^{3 \times 4} = 2^{12}$

 $e^{\pi i} = -1$

$$-1 = e^{\pi i}$$

$$(-1)^{\frac{1}{2}} = (e^{\pi i})^{\frac{1}{2}}$$

$$\sqrt{-1} = e^{\frac{\pi i}{2}}$$

$$i = e^{\frac{\pi i}{2}}$$

$$i^{i} = (e^{\frac{\pi i}{2}})^{i}$$

$$i^{i} = e^{\frac{\pi i^{2}}{2}}$$

$$i^{i} = e^{\frac{-\pi}{2}}$$

$$i^{i} = e^{\frac{-\pi}{2}}$$

$$i^{i} \approx 0.20787 \in \mathbb{R}$$

Cartesian Coordinates

Created by René Descartes in 1637

Polar Coordinates

Polar Coordinates

Angles are measured in radians $(0 \le \theta \le 2\pi)$

Polar to Cartesian Coordinate Conversion

- Your scientist wants you to draw a blue circle with a radius of 250 centered at the origin
- Solution strategy:
 - Create a Numpy array of 1,000 equally spaced independent radian angle values spanning the interval $0 \le \theta \le 2\pi$
 - Create an array of dependent variable values the (x, y) Cartesian coordinates - by invoking vectorized mathematical operators across the array of independent values
 - Have Matplotlib "connect the dots" between successive (x, y)
 Cartesian points (drawing straight line segments between them) to make the plot appear *smooth* to the unaided human eye

Run plot_circle.ipynb – Cells 1...4

Run plot_circle.ipynb – Cells 5...7

Run plot_circle.ipynb – Cell 8

Run plot_circle.ipynb – Cell 9

Parametric Curves

Parametric Curves

Parametric Curves Using Polar Graphs

- Your scientist wants you to plot <u>three</u> parametric curves using the built-in polar graph capability of matplotlib
 - Plot $r_1 = 4 + 4\cos(4\theta)$
 - Plot $r_2 = 3 + 3\cos(4\theta + \pi)$
 - Plot $r_3 = 5 + 5\cos\left(\frac{3}{2}\theta\right)$
- Use **1,000** intervals equally spaced between $0 \le \theta \le 4\pi$
- Before the computer shows the plots, can you predict ahead of time what each curve will look like?
- Developing a **visual intuition** for how functions behave is a very valuable skill that will aid you in future math classes

Run plot rose curves.ipynb – **Cells 1...3**

Run plot_rose_curves.ipynb – Cell 4

89

Parametric Curves Using Polar Graphs

The Superposition of Waves

- Even just two simple sinusoids (waves) when placed in superposition (added together) can produce very complicated results
- Your scientist wants to study the behavior of this superposition: $r_4 = 7 + 7 \sin(11\theta) \cos(5\theta)$
- Plot r_4 with a **black pen** over the interval $0 \le \theta \le 4\pi$
- There is a trigonometry identity called the "angle product formula" that allows us to represent the superposition of two sinusoids as the product of their respective wave functions

The Superposition of Waves

In classical wave theory, when waves overlap, their **amplitudes add up linearly**

Run plot_rose_curves.ipynb – Cell 5

Parametric Curves

Field Induced Polarization of Dirac Valleys in Bismuth*

*Bismuth is the element with the **highest** atomic mass that is **stable**

Random Walks

- Your scientist wants you to create a Python program to display the 2D Cartesian plot of a meandering walker
- The walker starts at the (0,0) origin and takes one step at a time
- At each step, the walker picks a random angle (uniform distribution) within the interval $[0,2\pi)$ and moves (from his current position) <u>one</u> unit of distance in that radial direction
- Your boss wants your program to show the entire journey of 10,000 random steps in your plot
- On average, how far away (Pythagorean distance) from the start point will the walker **stop**?

Run random_walk.ipynb – Cells 1...4

Run random_walk.ipynb – Cell 5

x[i+1], y[i+1] = Where you will be at after taking this step

Run random_walk.ipynb – Cell 6

Random Walks

Kinetic Theory of Gases

Most of Science is Waves

- Electrical
- Magnetic
- Acoustic
- Heat Flow
- Vibrational
- Torsional
- Nuclear / Quantum
- Gravitational
- Oceanic / Tidal
- Orbital Precession
- Springs

- Pendulums
- Tomography
- Stock Market
- Economics
- Astronomical
- Fluid Dynamics
- Earthquakes
- AC / DC
- AM / FM
- Speech
- Heartbeats

It is important that you develop a keen understanding of the mathematics of waves!

Traveling Waves & Superposition

$$\lambda = \frac{2\pi}{k} \rightarrow k = \frac{2\pi}{\lambda}$$

$$y_1 = A_1 \sin(k_1 x + \omega_1 t)$$

$$y_2 = A_2 \sin(k_2 x + \omega_2 t)$$
These waves have
both spatial and
temporal components
$$f = \frac{\omega}{2\pi} \rightarrow \omega = 2\pi f$$

$$y_1 + y_2 = ?$$

$$y_1 = A_1 \sin(k_1 x + \omega_1 t) = A_1 \sin k_1 x \cos \omega_1 t + A_1 \cos k_1 x \sin \omega_1 t$$

$$y_2 = A_2 \sin(k_2 x + \omega_2 t) = A_2 \sin k_2 x \cos \omega_2 t + A_2 \cos k_2 x \sin \omega_2 t$$

Angle
Sum
Identity

Simple Case:
$$A_1 = A_2 = 1, \omega_1 = \omega_2 = 0$$

 $y_1 = \sin k_1 x \cos 0 t + \cos k_1 x \sin 0 t$
 $y_2 = \sin k_2 x \cos 0 t + \cos k_2 x \sin 0 t$
 $y_1 + y_2 = \sin k_1 x + \sin k_2 x = 2 \sin \left(\frac{(k_1 + k_2)}{2} x\right) \cos \left(\frac{(k_1 - k_2)}{2} x\right)$
SUM \longrightarrow PRODUCT 103

Travelling Waves & Superposition

But what if the two waves are oscillating at different angular velocities or have different amplitudes, or different wave numbers?

<u>Unlock IPython's</u>
Magical Toolbox for
Your Coding Journey

<u>ReadTheDocs:</u> <u>IPython's **Display**</u> <u>Module</u> <u>Jupyter Notebook:</u> <u>An Introduction</u>

Animations using Matplotlib

In this notebook,

we will only

change the

parameters

of Wave #2

106

You *must* use the **global** keyword to specify any global *variables* you intend to <u>modify</u> inside a function

3D Cartesian Coordinates in matplotlib

Viewing Angles in matplotlib

Poloidal and Toroidal Angles

Matrices and Outer Product

Outer Product of Two Vectors

Run plot3d_sphere.ipynb – Cells 1..3

Run plot3d_sphere.ipynb – Cell 4

Run plot3d_sphere.ipynb – Cell 4

Spherical Coordinates

 $0 \le \mathbf{u} \le \pi \Longrightarrow$ **poloidal** (latitude) North to South Pole (vertical) $0 \le \mathbf{v} \le 2\pi \Longrightarrow$ toroidal (longitude) Around the slice (horizontal)

Run plot3d_sphere.ipynb – Cell 5


```
ax.plot_wireframe(x, y, z)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.set_aspect("equal")
plt.show()
```

widgets.interactive(plot_wireframe, azim=(-180, 180, 5), elev=(0, 90, 5))

Check plot3d_sphere.ipynb – Cell 5

124

Check plot3d_sphere.ipynb – Cell 5

Top-Down View

What is a vector?

What is a vector?

Vector Cross Product

$$\mathbf{c} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$$

 $[(a_2 \times b_3) - (a_3 \times b_2)] i + c = [(a_3 \times b_1) - (a_1 \times b_3)] j + [(a_1 \times b_2) - (a_2 \times b_1)] k$

The **cross product** of two vectors is another **vector** which is perpendicular to both vectors **A** and **B**

Every Facet has a Surface Normal Vector

Vector Dot Product

 $\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$ $\cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$ $\theta = \operatorname{acos} \left(\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} \right)$

Back Face Culling and Facet Shading

Run plot3d_sphere.ipynb – Cell 6

Define a function to draw the 3D <u>surface</u> graph using ipywidgets interactive sliders Notice we let matplotlib perform back face culling and facet shading

Check plot3d_sphere.ipynb – Cell 6

Check plot3d_sphere.ipynb – Cell 6

134

Modelling a Torus

- Your scientist would like to begin modelling the electromagnetic field around a toroidal coil carrying AC current
- The first step will be defining and drawing a 3D torus using a modified version of the spherical coordinate system
- The red arrow points in the **poloidal** direction and the blue arrow points in the **toroidal** direction
- A sphere and a torus are not homeomorphic: unlike a sphere, a torus needs two radii to fully describe it

Modelling a Torus

tion

Modelling a Torus

Run plot3d_torus.ipynb – Cells 1..3

Run plot3d_torus.ipynb – Cell 4

 $x = [\mathbf{R}_t + \mathbf{R}_c \sin \mathbf{u}] \cos \mathbf{v}$ $y = [\mathbf{R}_t + \mathbf{R}_c \sin \mathbf{u}] \sin \mathbf{v}$ $z = \mathbf{R}_c \cos \mathbf{u}$

Run plot3d_torus.ipynb – Cell 5

Check plot3d_torus.ipynb – Cell 5

141

Run plot3d_torus.ipynb – Cell 6

```
Define a function to draw the 3D surface graph using ipywidgets interactive sliders
Notice we let matplotlib perform back face culling and facet shading
[6] # Cell 6
    def plot surface(elev=30, azim=-45):
         ax = plt.axes(projection="3d")
         ax.view init(elev=elev, azim=azim)
         ax.figure.set size inches(10, 10)
         ax.plot surface(x, y, z, rcount=60, ccount=60, color="gold")
                                                                                    \bigcirc
         ax.set xlabel("x")
         ax.set ylabel("y")
         ax.set zlabel("z")
         ax.set_xlim(-radius_toroidal, radius_toroidal)
         ax.set ylim(-radius toroidal, radius toroidal)
         ax.set zlim(-radius toroidal, radius toroidal)
         ax.set_aspect("equal")
         plt.show()
     widgets.interactive(plot surface, azim=(-180, 180, 5), elev=(0, 90, 5))
```

Check plot3d_torus.ipynb – Cell 6

Session **01** – Now You Know...

- Create numerical arrays and plot polynomials
- Estimate and plot infinite series to visualize convergence
- Calculate Euclid's GCD (HCF) of pairs of random integers
- Calculate the 2nd central moment of **uniform distributions**
- Demonstrate **Euler's Identity** for Complex Numbers
- Use Polar Coordinates to draw parametric curves and 2D random walks
- Plot the superposition of two waves to create traveling and standing waves
- Use trigonometry to draw a 3D sphere and torus