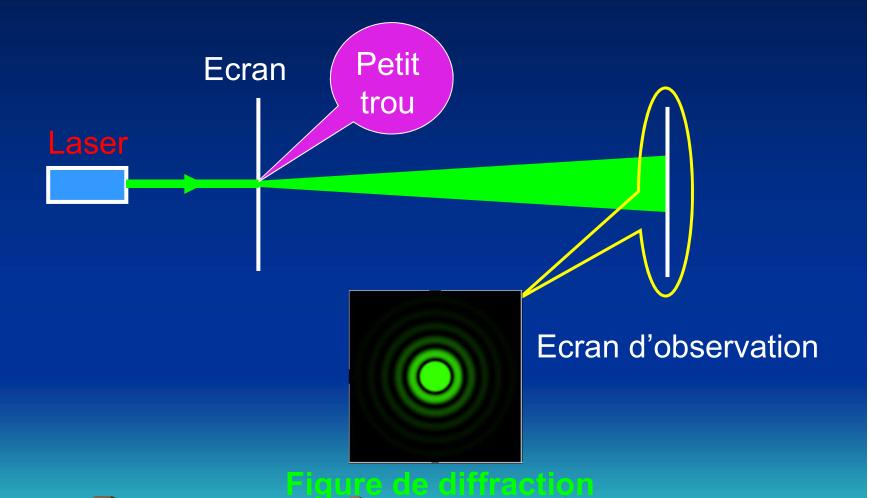
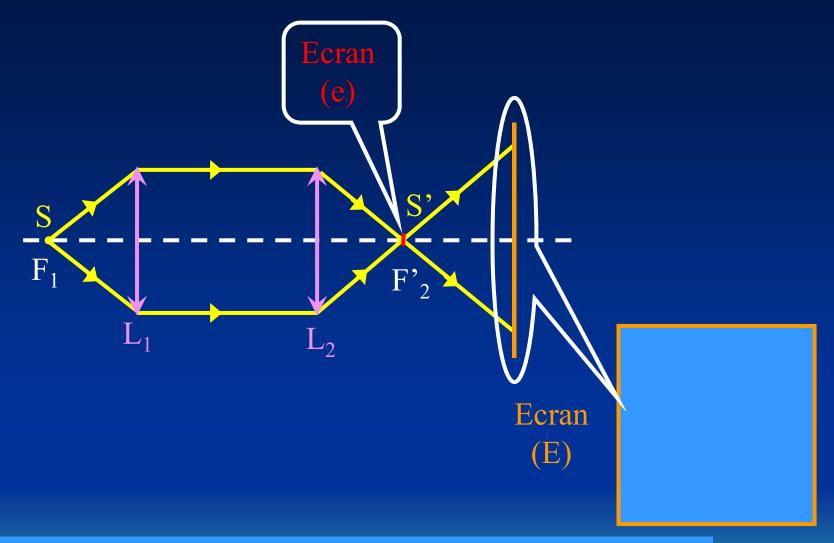
CHAPITRE III: La diffraction de la lumière

I. Introduction

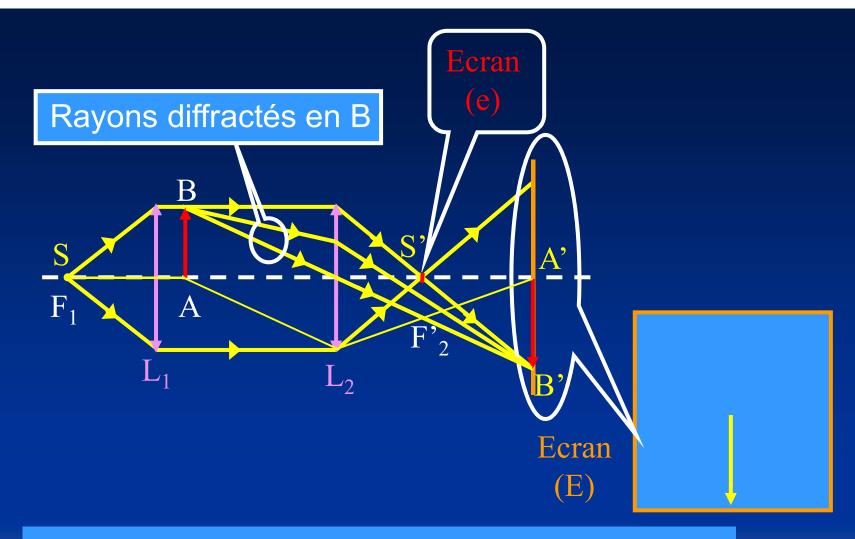


II. Mise en évidence de la diffraction

(expérience de strioscopie) S' Ecran (E)



L'écran « e » masque tous les rayons issus de S'



Les rayons diffractés ne sont pas masqués par e et forment donc l'image A'B' de l'objet AB

III. Etude théorique de la diffraction par une ouverture

III. 1. Principe d'Huygens-Fresnel

Principe d'Huygens

Tout élément ds atteint par une onde se comporte comme une source dite secondaire

Postulats de Fresnel

- L'amplitude de l'onde émise par ds est proportionnelle à ds
- La phase de l'onde émise par ds est celle de l'onde source lorsqu'elle atteint ds

III. 2. Diffractions de Fresnel et de Fraunhofer

Diffraction de Fresnel

La source et/ou l'écran d'observation ne sont pas très éloignés de l'objet diffractant (calculs compliqués)

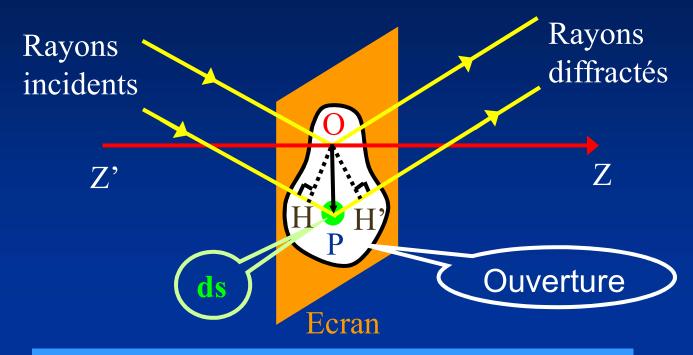
Diffraction de Fraunhofer

La source et l'écran d'observation sont très éloignés de l'objet diffractant (calculs relativement simples)

Dans toute la suite on va s'intéresser au cas relativement simple : diffraction de Fraunhofer

09/07/2024

III. 3. Diffraction par une ouverture plane



ds : élément de surface de l'ouverture

P: Centre de ds

O: Origine

$$\varphi = \frac{2\pi\delta}{\lambda} = \frac{2\pi(\overrightarrow{HP} + \overrightarrow{PH'})}{\lambda} = \frac{2\pi(\overrightarrow{OPu} - \overrightarrow{OPu'})}{\lambda}$$
$$= \frac{2\pi\overrightarrow{OP}(\overrightarrow{u} - \overrightarrow{u'})}{\lambda} = \frac{2\pi\overrightarrow{r}(\overrightarrow{u} - \overrightarrow{u'})}{\lambda}$$

$$\frac{dE}{dE} = Ads \ e^{j\frac{2\pi \vec{r}(\vec{u}' - \vec{u})}{\lambda}}$$

$$\overline{E} = \iint_{ouverture} \overline{dE} = \iint_{ouverture} Ads \ e^{j\frac{2\pi \vec{r}(\vec{u}' - \vec{u})}{\lambda}} = A\overline{z}$$

$$avec \quad \bar{z} = \iint_{ouverture} e^{j\frac{2\pi \, \vec{r}(\vec{u}' - \vec{u})}{\lambda}} ds$$

$$I = \overline{E} \ \overline{E}^* = A^2 \overline{z} \ \overline{z}^*$$

III. 4. Diffraction par une ouverture rectangulaire



$$\overline{z} = \int \int e^{j\frac{2\pi \vec{r}(\vec{u}'-\vec{u})}{\lambda}} ds$$

$$\vec{r}(\vec{u}'-\vec{u}) = x(\alpha'-\alpha) + y(\beta'-\beta)$$
ouverture

$$\vec{r}(\vec{u}' - \vec{u}) = x(\alpha' - \alpha) + y(\beta' - \beta)$$

$$|\vec{r}(\vec{u}'-\vec{u}) = x(\alpha'-\alpha) + y(\beta'-\beta)|$$

ds = dx dy

$$\overline{z} = \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{j\frac{2\pi}{\lambda}(x(\alpha'-\alpha)+y(\beta'-\beta))} dxdy$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(\int_{-\frac{b}{2}}^{\frac{b}{2}} e^{j\frac{2\pi}{\lambda}(x(\alpha'-\alpha)+y(\beta'-\beta))} dy \right) dx$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{j\frac{2\pi}{\lambda}(\alpha'-\alpha)} dx \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{j\frac{2\pi}{\lambda}(\beta'-\beta)} dy$$

$$\int_{-\frac{a}{2}}^{\frac{a}{2}} e^{j\frac{2\pi x}{\lambda}(\alpha'-\alpha)} dx = \left[\frac{e^{j\frac{2\pi x}{\lambda}(\alpha'-\alpha)}}{j\frac{2\pi}{\lambda}(\alpha'-\alpha)} \right]_{-\frac{a}{2}}^{\frac{a}{2}} = \frac{e^{j\frac{\pi a}{\lambda}(\alpha'-\alpha)} - e^{-j\frac{\pi a}{\lambda}(\alpha'-\alpha)}}{j\frac{2\pi}{\lambda}(\alpha'-\alpha)}$$

$$= a \frac{\sin\left(\frac{\pi \ a}{\lambda}(\alpha' - \alpha)\right)}{\frac{\pi \ a}{\lambda}(\alpha' - \alpha)}$$

$$\int_{-\frac{b}{2}}^{\frac{b}{2}} e^{j\frac{2\pi y}{\lambda}(\beta'-\beta)} dy = b \frac{\sin\left(\frac{\pi b}{\lambda}(\beta'-\beta)\right)}{\frac{\pi b}{\lambda}(\beta'-\beta)}$$

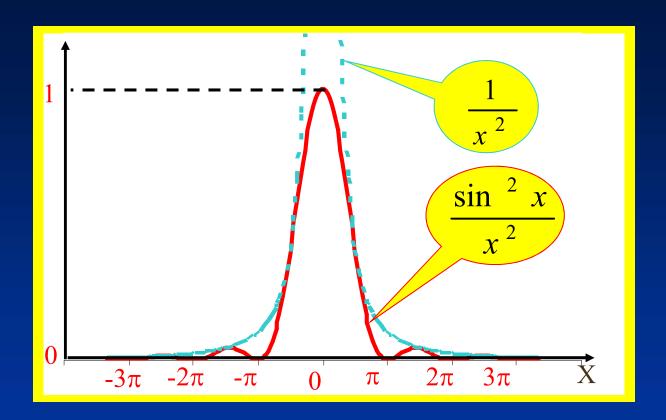
$$\overline{z} = ab \left(\frac{\sin u}{u} \right) \left(\frac{\sin v}{v} \right)$$
 avec: $u = \frac{\pi a}{\lambda} (\alpha' - \alpha)$ et $v = \frac{\pi b}{\lambda} (\beta' - \beta)$

$$I = A^2 \overline{z} \ \overline{z}^* = A^2 a^2 b^2 \left(\frac{\sin^2 u}{u^2} \right) \left(\frac{\sin^2 v}{v^2} \right)$$
$$= I_0 \left(\frac{\sin^2 u}{u^2} \right) \left(\frac{\sin^2 v}{v^2} \right)$$

$$avec: I_0 = A^2 a^2 b^2$$
 Intensité de la tache centrale

$$u = v = 0 \Leftrightarrow (\alpha' = \alpha \ et \ \beta' = \beta) \Leftrightarrow \vec{u}' = \vec{u}$$

$$\alpha' = \alpha$$
 et $\beta' = \beta$ \longrightarrow $I = I_0$ (maximum principal)



						$\pm 6.49\pi$	
$\frac{\sin^2 x}{x^2}$	0.047	0.016	0.008	0.005	0.003	0.0024	0.0018

09/07/2024

$$(u = 0 \ et \ v = \pm 1.43\pi) \ ou \ (v = 0 \ et \ u = \pm 1.43\pi)$$

$$\left(\alpha' = \alpha \quad et \quad \beta' = \beta \pm 1.43 \frac{\lambda}{b}\right) \quad ou \quad \left(\beta' = \beta \quad et \quad \alpha' = \alpha \pm 1.43 \frac{\lambda}{a}\right)$$

 $I_1 = 0.047I_0$ (Les 4 premiers maxima secondaires situés sur OX et OY)

$$(u = 0 \ et \ v = \pm 2.46\pi) \ ou \ (v = 0 \ et \ u = \pm 2.46\pi)$$

$$\left(\alpha' = \alpha \quad et \quad \beta' = \beta \pm 2.46 \frac{\lambda}{b}\right) \quad ou \quad \left(\beta' = \beta \quad et \quad \alpha' = \alpha \pm 2.46 \frac{\lambda}{a}\right)$$

$$(u = 0 \ et \ v = \pm 3.47\pi; \ \pm 4.48\pi; \ \pm 5.48\pi; \ \pm 6.49\pi)$$
ou $(v = 0 \ et \ u = \pm 3.47\pi; \ \pm 4.48\pi; \ \pm 5.48\pi; \ \pm 6.49\pi)$

$$\left(\alpha' = \alpha \quad et \quad \beta' = \beta \pm 3.47 \frac{\lambda}{b}; \quad \beta \pm 4.48 \frac{\lambda}{b}; \quad \beta \pm 5.48 \frac{\lambda}{b}; \quad \beta \pm 6.49 \frac{\lambda}{b}\right)$$

$$ou\left(\beta' = \beta \quad et \quad \alpha' = \alpha \pm 3.47 \frac{\lambda}{a}; \quad \alpha \pm 4.48 \frac{\lambda}{a}; \quad \alpha \pm 5.48 \frac{\lambda}{a}; \quad \alpha \pm 6.49 \frac{\lambda}{a}\right)$$

 $I_3 = 0.008I_0$, $I_4 = 0.005I_0$, $I_5 = 0.003I_0$ et $I_6 = 0.0024I_0$ Les 4x4 Maxima secondaires suivants situés sur OX et OY

$$(u = \pm 1.43\pi \ et \ v = \pm 1.43\pi)$$

$$\left(\alpha' = \alpha \pm 1.43 \frac{\lambda}{a} \quad et \quad \beta' = \beta \pm 1.43 \frac{\lambda}{b}\right) \Rightarrow \begin{array}{c} 1_7 = 0.00221_0 \\ 4 \text{ Maxima secondaires suivants} \\ \text{(situés sur les diagonales)} \end{array}$$

 $I_7 = 0.0022I_0$

(situés sur les diagonales)

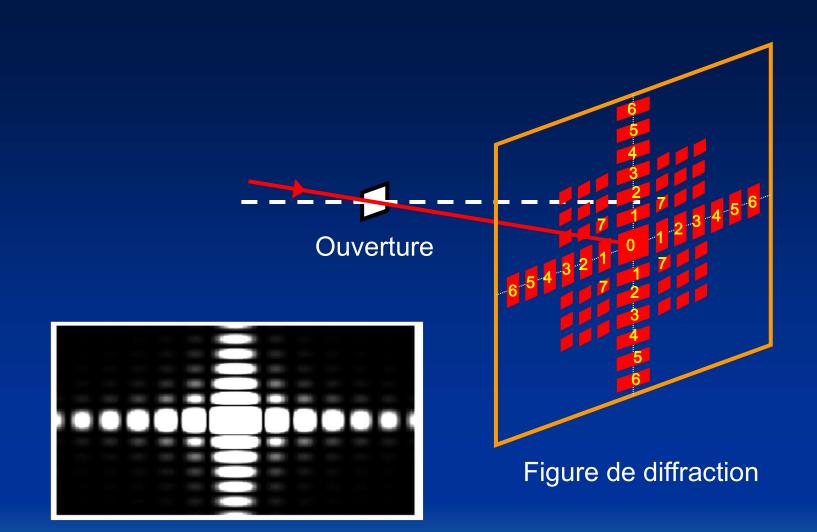
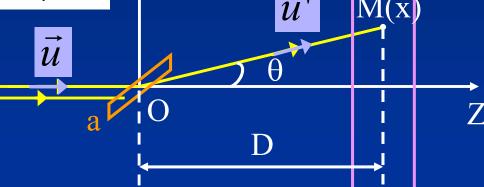


Photo de la figure de diffraction par une ouverture rectangulaire

III. 5. Diffraction par une fente rectangulaire

$$\left(b \succ \succ \lambda \Rightarrow \beta' = \beta \pm Cste \frac{\lambda}{b} \approx \beta\right) \Longrightarrow \begin{array}{c} \text{Diffraction négligeable} \\ \text{dans la direction OY} \end{array}$$

$$\vec{u} = \vec{e}_z \Rightarrow \alpha = 0 \; ; \; \beta = 0 \; et \; \gamma = 1$$



$$\vec{u}' = \sin \theta \, \vec{i} + \cos \theta \, \vec{k} \Rightarrow \alpha' = \sin \theta \, ;$$

 $\beta' = 0 \quad et \quad \gamma' = \cos \theta$

Ecran d'observation

$$I = I_0 \frac{\sin^2 u}{u^2} \frac{\sin^2 v}{v^2} = I_0 \frac{\sin^2 \left(\frac{\pi a}{\lambda} (\alpha' - \alpha)\right)}{\left(\frac{\pi a}{\lambda} (\alpha' - \alpha)\right)^2} \frac{\sin^2 \left(\frac{\pi b}{\lambda} (\beta' - \beta)\right)}{\left(\frac{\pi b}{\lambda} (\beta' - \beta)\right)^2}$$

$$\approx I_0 \frac{\sin^2\left(\frac{\pi a}{\lambda}(\sin\theta)\right)}{\left(\frac{\pi a}{\lambda}(\sin\theta)\right)^2}$$

$$\frac{\sin^2 x}{x^2}$$
 décroit rapidement

$$I = I(\theta) \approx I_0 \frac{\sin^2\left(\frac{\pi a}{\lambda}\theta\right)}{\left(\frac{\pi a}{\lambda}\theta\right)^2} \approx I_0 \frac{\sin^2\left(\frac{\pi ax}{\lambda D}\right)}{\left(\frac{\pi ax}{\lambda D}\right)^2}$$
Pour $\lambda = 0.6 \mu m$ et $a = 0.1 \mu m$; le 10^{eme} Min est à $\theta = 3.4^{\circ}$

le 10^{eme} Min est à $\theta = 3.4^{\circ}$

$$I = I(x) \approx I_0 \frac{\sin^2\left(\frac{\pi \ ax}{\lambda D}\right)}{\left(\frac{\pi \ ax}{\lambda D}\right)^2} = I_0 \frac{\sin^2 u}{u^2}$$

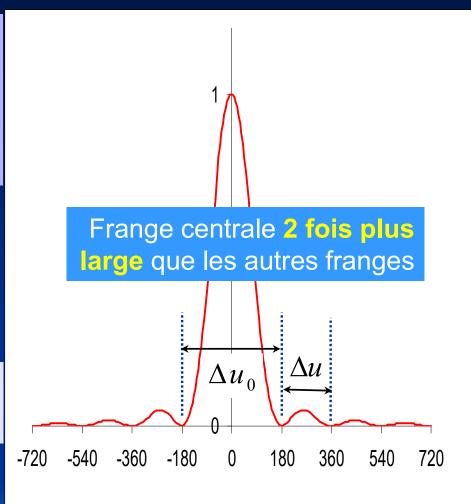
$$u = \frac{\pi \ ax}{\lambda D}$$

Largeur de la frange centrale

$$\Delta u_0 = \frac{\pi \ a \Delta x_0}{\lambda D} = 2\pi \Rightarrow \Delta x_0 = 2\frac{\lambda D}{a}$$

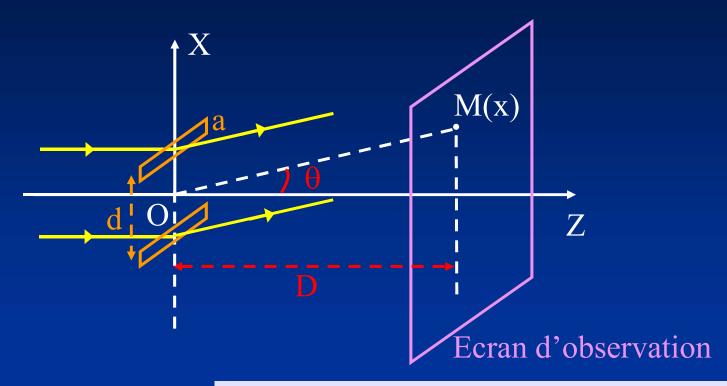
Largeur des autres franges

$$\Delta u = \frac{\pi \ a\Delta x}{\lambda D} = \pi \Rightarrow \Delta x = \frac{\lambda D}{a}$$



$$x_n = n \frac{\lambda D}{a}$$

III. 6. Diffraction par deux fentes (Fentes d'Young)



L'amplitude des ondes

L'amplitude des ondes diffractées par chacune des deux fentes
$$A = \sqrt{I(\theta)} \approx \sqrt{I_0} \frac{\sin\left(\frac{\pi \ a\theta}{\lambda}\right)}{\frac{\pi \ a\theta}{\lambda}} \approx \sqrt{I_0} \frac{\sin\left(\frac{\pi \ ax}{\lambda D}\right)}{\frac{\pi \ ax}{\lambda D}}$$

Déphasage entre les ondes dans une direction θ donnée

$$I = A^2 + A^2 + 2\sqrt{A^2 A^2} \cos \varphi = 2A^2 \left(1 + \cos \left(\frac{2\pi xd}{\lambda D} \right) \right)$$

$$I = 4A^{2} \cos^{2}\left(\frac{\pi xd}{\lambda D}\right) = 4I_{0} \frac{\sin^{2}\left(\frac{\pi ax}{\lambda D}\right)}{\left(\frac{\pi ax}{\lambda D}\right)^{2}} \left(\cos^{2}\left(\frac{\pi xd}{\lambda D}\right)\right)$$

Terme de diffraction

Terme d'interférence

$$d \succ a \Rightarrow \frac{\lambda D}{d} \prec \frac{\lambda D}{a}$$

