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Homotopy Algebras and Quantum Field Theory

▶ Homotopical methods based on L∞-algebras and A∞-algebras have
sharpened our understanding of algebraic and kinematic structures of
scattering amplitudes and dynamical processes of quantum field theory

▶ Expresses Feynman diagram techniques in a manner that is
mathematically precise and conceptually clear, in contrast to standard
textbook approaches (e.g. canonical quantization or path integrals)

▶ Data of any classical perturbative field theory are completely encoded in a
corresponding L∞-algebra (Hohm & Zwiebach ’17;

Jurčo, Raspollini, Sämann & Wolf ’18; Costello & Gwilliam ’18; . . . )

▶ L∞-algebras are the natural algebraic structure underlying the
Batalin-Vilkovisky (BV) formalism, so perturbative QFT is captured by
quantum BV theory through the homological perturbation lemma

▶ ‘Integrating out’ degrees of freedom in path integral understood as
homotopy transfer (Doubek, Jurčo & Pulmann ’17;

Arvanitakis, Hohm, Hull & Lekeu ’20; Elliot & Gwilliam ’20; . . . )



Homotopy Algebras and Quantum Field Theory

▶ Scattering amplitudes computed by pulling back cyclic L∞-structure to its
minimal model by quasi-isomorphisms (Nützi & Reiterer ’18; Arvanitakis ’19;

Jurčo, Macrelli, Sämann & Wolf ’19; Bonezzi, Chiaffrino, Diaz-Jaramillo & Hohm ’23; . . . )

▶ Homological constructions also allow for extensions of standard QFT:
Quantum BV formalism makes sense in any closed symmetric monoidal
category, e.g. representation category of a triangular Hopf algebra defines
braided quantum field theory (Nguyen, Schenkel & Sz ’21)

▶ In this talk: Explain formulation and computation of vacuum correlation
functions in purely algebraic setting of quantum BV formalism, analogous
to setup based on quantum A∞-algebras inspired by techniques from
string field theory (Masuda & Matsunaga ’20; Okawa ’22; Konosu & Okawa ’23;

Konosu & Totsuka-Yoshinaka ’24; . . . )

▶ Disclaimer: I will not address how to deal with analytic complications of
infinite-dimensional vector spaces of fields, distributional nature of
correlation functions, or standard loop divergences of quantum field theory



Outline

▶ L∞-Algebras

▶ Quantum BV Formalism

▶ Homological Perturbation Theory

▶ Scalar Field Theories

▶ Algebraic Schwinger-Dyson Equations

Based on [arXiv: 2107.02532, 2302.10713, 2406.02372, 2408.14583]

with D. Bogdanović, M. Dimitrijević Ćirić, N. Konjik, H. Nguyen, B. Nikolić,

V. Radovanović, A. Schenkel, G. Trojani



Flat and Curved L∞-Algebras

▶ L∞-algebras organise gauge symmetries and dynamics of classical
perturbative field theories through their Maurer-Cartan theory

▶ Graded antisymm multilinear maps ℓn : ∧nV −→ V [2− n] of
degree 2− n for n ⩾ 0 on a graded R-vector space V =

⊕
n∈Z Vn:

ℓn(. . . , v , v
′, . . . ) = −(−1)|v| |v

′| ℓn(. . . , v
′, v , . . .)

▶ Homotopy Jacobi identites Jn(v1, . . . , vn) = 0, n ⩾ 0, vi ∈ V :

Jn =
n∑

i=0

(−1)i (n−i) ℓn+1−i ◦
(
ℓi ⊗ 1

⊗ n−i) ◦
∑

σ∈Sh(i ;n)

sgn(σ) σ

▶ Cyclic: graded inner product ⟨−,−⟩ : V ⊗ V −→ R[−3] satisfying

⟨v0, ℓn(v1, v2, . . . , vn)⟩ = ±⟨vn, ℓn(v0, v1, . . . , vn−1)⟩



Flat and Curved L∞-Algebras

▶ Flat if ℓ0 = 0:

ℓ1(ℓ1(v)) = 0 (V , ℓ1) is a cochain complex

ℓ1(ℓ2(v ,w)) = ℓ2(ℓ1(v),w)± ℓ2(v , ℓ1(w)) ℓ2 is a cochain map

ℓ2(v , ℓ2(w , u)) + cyclic = (ℓ1 ◦ ℓ3 ± ℓ3 ◦ ℓ1)(v ,w , u) Jacobi up to coboundary

▶ Curved if ℓ0 : R −→ V [2] is non-zero; ℓ0(1) is the curvature:

ℓ1
(
ℓ0(v)

)
= 0 , ℓ1

(
ℓ1(v)

)
= −ℓ2

(
ℓ0(1), v

)
, . . .

▶ Curvature can be used to incorporate source terms or external fields
when ℓ0(1) is central:

ℓn+1

(
ℓ0(1), v1, . . . , vn

)
= 0

This ensures ℓ1 is a differential: (ℓ1)
2 = 0



BV Formalism

▶ Build derived space of classical observables of a Lagrangian field

theory starting from its cyclic L∞-algebra (V , {ℓn}, ⟨−,−⟩)

▶ Graded commutative algebra SymV [2]:

φψ = (−1)|φ| |ψ| ψ φ

▶ Extend cyclic L∞-structure ({ℓextn }, ⟨−,−⟩ext) to (SymV [2])⊗ V :

ℓext0 (1) = 1⊗ ℓ0(1)

ℓextn (a1 ⊗ v1, . . . , an ⊗ vn) = ± a1 · · · an ⊗ ℓn(v1, . . . , vn)

⟨a1 ⊗ v2, a2 ⊗ v2⟩ext = ± a1 a2 ⟨v1, v2⟩

▶ Choose dual bases ek ∈ V , ek ∈ V ∗ ≃ V [3] and

contracted coordinate functions ξ = ek ⊗ ek ∈ (SymV [2])⊗ V



BV Formalism

▶ BV Action SBV ∈ SymV [2] is analogue of curved Maurer-Cartan action:

SBV =
∑
n⩾0

(−1)(
n
2)

(n + 1)!
⟨ξ, ℓextn (ξ⊗n)⟩ext

▶ (Classical) Master Equation: {SBV, SBV} = 0 ,
with the BV antibracket {φ,ψ} = ⟨φ,ψ⟩ for φ,ψ ∈ V [2]

▶ (QBV)
2 = 0 where QBV = {SBV,−}

▶ Classical observables
(
SymV [1]∗ ≃ SymV [2],QBV, {−,−}⋆

)
form a P0-algebra:

−QBV{φ,ψ} = {QBVφ,ψ}+ (−1)|φ| {φ,QBVψ} compatibility

{φ,ψ} = (−1)|φ| |ψ| {ψ,φ} symmetric

{φ, {ψ, χ}} = ±{ψ, {χ, φ}} ± {χ, {φ,ψ}} Jacobi identity

{φ,ψ χ} = {φ,ψ}χ± ψ {φ, χ} Leibniz rule



BV Quantization

▶ BV Laplacian ∆BV : SymV [2] −→ (SymV [2])[1]:

∆BV(1) = 0 = ∆BV(φ) , ∆BV(φψ) = {φ,ψ}

∆BV(a b) = ∆BV(a) b + (−1)|a| a∆BV(b) + {a, b}

∆BV

(
φ1 · · ·φn

)
=

∑
i<j

±{φi , φj} φ1 · · · φ̂i · · · φ̂j · · ·φn

Implements Gaussian integration/Wick’s Theorem

▶ Satisfies (∆BV)
2 = 0 , ∆BV(SBV) = 0

▶ (Qℏ
BV)

2 = 0 where Qℏ
BV = {SBV,−}+ ℏ∆BV

▶ Quantum observables
(
SymV [2],Qℏ

BV

)
form an E0-algebra



Homological Perturbation Theory

▶ Propagators determine strong deformation retracts of V [1]∗ ≃ V [2]:

(
H•(V [2]), 0

) ι -- (
V [2], ℓ1

)γ

��

πmm
π ι = 1 , ι π − 1 = ℓ1 γ + γ ℓ1
γ2 = 0 , γ ι = 0 , π γ = 0

▶ Observables:
(
SymH•(V [2]), 0

) I -- (
SymV [2], ℓ1

)Γ

��

Πnn

▶ Maps I and Π extend ι and π as commutative dg-algebra morphisms:

I([ψ1] · · · [ψn]) = ι[ψ1] · · · ι[ψn] , Π(φ1 · · ·φn) = π(φ1) · · ·π(φn)

▶ (ι π)2 = ι π : V [2] −→ H•(V [2]) splits V [2] = V [2]⊥ ⊕ H•(V [2]):

SymV [2] = SymV [2]⊥ ⊗ SymH•(V [2])

▶ Put Γ(φ⊥
1 · · ·φ⊥

n ⊗ [ψ]) =
1

n

n∑
i=1

±φ⊥
1 · · ·φ⊥

i−1 γ(φ
⊥
i )φ

⊥
i+1 · · ·φ⊥

n ⊗ [ψ]



Homological Perturbation Theory

▶ Let Sint = ⟨ξ, ℓext0 (1)⟩ext +
∑
n⩾2

(−1)(
n
2)

(n + 1)!
⟨ξ, ℓextn (ξ⊗n)⟩ext

▶ Homological Perturbation Lemma: With δ = {Sint,−}+ ℏ∆BV, there
is a strong deformation retract

(
SymH•(V [2]), δ̃

) Ĩ .. (
SymV [2],Qℏ

BV

)Γ̃
��

Π̃
nn

where Π̃ = Π + Π (1− δ Γ)−1 δ Γ = Π ◦
∞∑
k=0

(δ Γ)k

▶ ⟨φ1 · · ·φn⟩ := Π̃ (φ1 · · ·φn) ∈ SymH•(V [2]) are (smeared) n-point
correlation functions on space of vacua H•(V [2]) of the field theory

▶ Evaluated on a particular vacuum this gives the usual numerical
correlators of perturbative quantum field theory around this vacuum



Scalar Field Theory

▶ V = V1 ⊕ V2 , V1 = V2 = C∞(Rd) , ϕ ∈ V1 , ϕ+ ∈ V2 :

ℓ1 = □+m2 , ℓn(ϕ1, . . . , ϕn) = (−1)(
n
2) λn ϕ1 · · ·ϕn

▶ Maurer-Cartan equation:

Fϕ = ℓ1(ϕ) +
∑
n⩾2

(−1)(
n
2)

n!
ℓn(ϕ

⊗n) =
(
□+m2)ϕ+

∑
n⩾2

λn

n!
ϕn = 0

▶ With the cyclic inner product ⟨ϕ, ϕ+⟩ =

∫
ddx ϕ · ϕ+ , the

Maurer-Cartan action is:

S =
1

2!
⟨ϕ, ℓ1(ϕ)⟩+

∑
n⩾2

(−1)(
n
2)

(n + 1)!
⟨ϕ, ℓn(ϕ⊗n)⟩

=

∫
ddx

1

2
ϕ
(
□+m2)ϕ+

∑
n⩾3

λn−1

n!
ϕn



Scalar Field Theory

▶ Plane waves ek(x) = e− i k·x =
(
ek(x)

)∗
, ⟨ek , ep⟩ = (2π)d δ(k − p)

▶ Interactions:

Sint =
∑
n⩾3

∫
k1,...,kn

λn−1

n!
(2π)d δ(k1 + · · ·+ kn) e

k1 · · · ekn ∈ SymV [2]

▶ Deformation retract: H•(V [2]) = 0 for m2 > 0:

(0, 0)
0 -- (

V [2], ℓ1
)−G

��

0
ll G = (ℓ1)−1 = (□+m2)−1

▶ Correlation functions: (C, 0) Ĩ .. (
SymV [2],Qℏ

BV

)Γ̃
��

Π̃
ll

G̃n(p1, . . . , pn) :=
∞∑
k=1

Π
(
ℏ∆BV Γ + {Sint,−} Γ

)k
(ep1 · · · epn )

Only Π(1) = 1 is non-zero (as π = 0) — this is a general proposal!



Scalar Field Theory with External Sources

▶ Couple to external fields J ∈ C∞(Rd) by adding ℓ0 : R −→ V2

with central curvature ℓ0(1) = J

▶ Curved Maurer-Cartan equation: Fϕ = −ℓ0(1) = −J

▶ Curved Maurer-Cartan action:

SJ = S + ⟨ϕ, ℓ0(1)⟩ = S +

∫
ddx J · ϕ

▶ Curved homological perturbation theory:

SJ
int = Sint + ⟨ξ, ℓext0 (1)⟩⋆ = Sint +

∫
k0

J̃(k0) e
k0

where J̃(k) =

∫
ddx e− i k·x J(x)



Scalar Field Theory: Examples

1. 4-point function of free scalar field (λn = 0):

G̃ 0
4 (p1, . . . , p4) = (ℏ∆BV Γ)2(ep1 · · · ep4

)
= G̃ 0

2 (p1, p2) G̃
0
2 (p3, p4) + G̃ 0

2 (p1, p2) G̃
0
2 (p2, p4) + G̃ 0

2 (p1, p4) G̃
0
2 (p2, p3)

where G̃ 0
2 (p1, p2) = −ℏ (2π)d δ(p1 + p2)

p2
1 +m2

; Wick’s Theorem

2. 2-point function at 1-loop in λϕ4-theory (λ3 = λ):

G̃2(p1, p2) = (ℏ∆BV Γ)2 {Sint, Γ (e
p1 ep2)}

= −ℏ2 λ
2

(2π)d δ(p1 + p2)

(p2
1 +m2) (p2

2 +m2)

∫
k

1

k2 +m2
= −ℏ (2π)d δ(p1 + p2)

p2
1 +m2 +Π(p2

1)

This identifies the self-energy

1

ℏ
Π =

λ

2

∫
ddp

(2π)d
1

p2 +m2



Scalar Field Theory: Examples

3. 1-point function at 1-loop in λϕ3-theory (λ2 = λ):

G̃1(p) = ℏ∆BV Γ {Sint, Γ (e
p)} = −ℏ λ

2

(2π)d δ(p)

p2 +m2

∫
k

1

k2 +m2

Eliminate tadpoles with curvature: ℓ0(1) = Y ∈ R ⊂ V2

Adds linear counterterm Y ϕ in curved Maurer-Cartan action, modifies
Sint in BV formalism by addition of

SY = ⟨ξ, ℓext0 (1)⟩ext = Y

∫
k

(2π)d δ(k) ek

Full 1-point function at 1-loop:

G̃1(p) = −ℏ λ
2

(2π)d δ(p)

p2 +m2

∫
k

1

k2 +m2
+ Y

(2π)d δ(p)

p2 +m2

Cancels all 1-loop tadpole contributions if Y = ℏ λ
2

∫
k

1

k2 +m2



Schwinger-Dyson Equations: Textbook Approach

▶ ‘Quantum equations of motion’ for correlation functions follow from
invariance of path integral measure under infinitesimal variations of fields:

0 =
1

Z

∫
Dϕ

δ

δϕ(y)

(
ϕ(x1) · · ·ϕ(xn) e−S/ℏ

)
=

n∑
i=1

δ(xi − y)
〈
ϕ(x1) · · · ϕ̂(xi ) · · ·ϕ(xn)

〉
− 1

ℏ

〈
ϕ(x1) · · ·ϕ(xn)

δ

δϕ(y)
S
〉

▶ Example: In λϕ3-theory after Fourier transformation to momentum
space:

(p2 +m2)
〈
ϕ̃(p) ϕ̃(p1) . . . ϕ̃(pn)

〉
+
λ

2

∫
k

〈
ϕ̃(k) ϕ̃(p − k) ϕ̃(p1) · · · ϕ̃(pn)

〉
= ℏ

n∑
i=1

(2π)d δ(p + pi )
〈
ϕ̃(p1) · · · ̂̃ϕ(pi ) · · · ϕ̃(pn)

〉



Schwinger-Dyson Equations: Algebraic Approach

Recall: Homological Perturbation Lemma gives a strong deformation retract

(
SymH•(V [2]), δ̃

) Ĩ .. (
SymV [2],Qℏ

BV = ℓ1 + δ
)Γ̃

��

Π̃
nn

with δ̃ = Π(1− δ Γ)−1 δ I , Π̃ = Π (1− δ Γ)−1. This implies:

▶ Lemma: Π̃ ◦ Qℏ
BV = 0

Proof: Π̃ is a cochain map: Π̃ ◦ Qℏ
BV = δ̃ ◦ Π̃ . Since only Π(1) = 1

is non-zero and δ(1) = {Sint, 1}+ ℏ∆BV(1) = 0, right-hand side is 0.

▶ Standard identities obeyed by correlation functions in quantum field
theory are corollaries of this (e.g. Ward-Takahashi identities in QED)

▶ Algebraic Schwinger-Dyson Equations: Precompose with contracting
homotopy Γ and use ℓ1 ◦Γ+Γ ◦ ℓ1 +1 = I ◦Π to get recursion relation:

Π̃ = Π + Π̃ ◦ δ ◦ Γ



Schwinger-Dyson Equations: Wick’s Theorem

▶ In free scalar field theory with Qℏ 0
BV = ℓ1 + ℏ∆BV only even-multiplicity

correlators are non-zero:

G̃ 0
2n(p1, . . . , p2n) := Π̃ (ep1 · · · ep2n ) = Π̃ (ℏ∆BV Γ) (ep1 · · · ep2n )

▶ Expanding out right-hand side using definitions gives recursion relations

G̃ 0
2n(p1, . . . , p2n) =

1

2n

∑
i ̸=j

G̃ 0
2 (pi , pj) G̃

0
2n−2(p1, . . . , p̂i , . . . , p̂j , . . . , p2n)

where G̃ 0
2 (pi , pj) = −ℏ (2π)d δ(pi + pj)

p2
i +m2

▶ Symmetrization of standard equations, due to ‘symmetric tensor trick’
used in fattening of maps for Homological Perturbation Lemma

▶ Solution is G̃ 0
2n(p1, . . . , p2n) =

1

n! 2n

∑
σ∈S2n

n∏
k=1

G̃ 0
2 (pσ(2k−1), pσ(2k))



Schwinger-Dyson Equations: Interactions

▶ With Qℏ
BV = ℓ1 + ℏ∆BV + {Sint,−} recursion is

G̃n(p1, . . . , pn) = Π̃ (ℏ∆BV Γ) (ep1 · · · epn ) + Π̃ {Sint, Γ (e
p1 · · · epn )}

▶ Expanding out right-hand side using definitions gives recursion relations

G̃n(p1, . . . , pn) =
1

n

∑
i ̸=j

G̃ 0
2 (pi , pj) G̃n−2(p1, . . . , p̂i , . . . , p̂j , . . . , pn)

−
∑
r⩾3

λr−1

(r − 1)!

1

n

n∑
i=1

1

p2
i +m2

∫
k1,...,kr−1

(2π)d δ(k1 + · · · kr−1 − pi )

× G̃n+r−2(p1, . . . , pi−1, k1, . . . , kr−1, pi+1, . . . , pn)

▶ Example: n = 2 in λϕ3-theory:

G̃2(p1, p2) = G̃ 0
2 (p1, p2)+

λ

4

∫
k

G̃3(k, p1 − k, p2)

p2
1 +m2

+
λ

4

∫
k

G̃3(p1, k, p2 − k)

p2
2 +m2


