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Homotopy Algebras and Quantum Field Theory

Homotopical methods based on L.-algebras and Ac-algebras have
sharpened our understanding of algebraic and kinematic structures of
scattering amplitudes and dynamical processes of quantum field theory

Expresses Feynman diagram techniques in a manner that is
mathematically precise and conceptually clear, in contrast to standard
textbook approaches (e.g. canonical quantization or path integrals)

Data of any classical perturbative field theory are completely encoded in a

corresponding L.-algebra (Hohm & Zwiebach '17;
Jurgo, Raspollini, Samann & Wolf '18; Costello & Gwilliam '18; ...)

Lo-algebras are the natural algebraic structure underlying the
Batalin-Vilkovisky (BV) formalism, so perturbative QFT is captured by
quantum BV theory through the homological perturbation lemma

‘Integrating out’ degrees of freedom in path integral understood as
homotopy transfer (Doubek, Juréo & Pulmann '17;
Arvanitakis, Hohm, Hull & Lekeu '20; Elliot & Gwilliam '20; ...)



Homotopy Algebras and Quantum Field Theory

Scattering amplitudes computed by pulling back cyclic Loo-structure to its
minimal model by quasi-isomorphisms (Niitzi & Reiterer '18; Arvanitakis '19;
Jurgo, Macrelli, Sdmann & Wolf '19; Bonezzi, Chiaffrino, Diaz-Jaramillo & Hohm '23; ...)

Homological constructions also allow for extensions of standard QFT:
Quantum BV formalism makes sense in any closed symmetric monoidal
category, e.g. representation category of a triangular Hopf algebra defines
braided quantum field theory (Nguyen, Schenkel & Sz '21)

In this talk: Explain formulation and computation of vacuum correlation
functions in purely algebraic setting of quantum BV formalism, analogous
to setup based on quantum A..-algebras inspired by techniques from

string field theory (Masuda & Matsunaga '20; Okawa '22; Konosu & Okawa '23;
Konosu & Totsuka-Yoshinaka '24; ...)

Disclaimer: | will not address how to deal with analytic complications of
infinite-dimensional vector spaces of fields, distributional nature of
correlation functions, or standard loop divergences of quantum field theory
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Flat and Curved L. -Algebras

L.-algebras organise gauge symmetries and dynamics of classical
perturbative field theories through their Maurer-Cartan theory

Graded antisymm multilinear maps £, : A"V — V[2 — n] of
degree 2 —n for n>0 on a graded R-vector space V = P, ., Vi

bl v, V) = (=D)L V)

Homotopy Jacobi identites Jp(vi,...,va) = 0, n >0, v; € V:

n

jn = Z(_l)i(n_i) en+17f o (él @ ]l®n_[) °© Z sgn(a) g

i=0 o€Sh(iin)

Cyclic: graded inner product (—,—): V ® V — R[-3] satisfying

(vo, €n(vi, oy ..oy Vn)) = £ (Va, ln(vo, Vi, ...y Va1))



Flat and Curved L..-Algebras
» Flatif 4y = O:

G(6a(v)
l(l2(v,w)) = bo(b1(v), w) £ £o(v, l1(w)) ¢z is a cochain map

0 (V,41) is a cochain complex

(v, la(w, u)) + cyclic = (£1043 £ 0304¢1)(v,w,u) Jacobi up to coboundary

» Curved if £y :R — V[2] is non-zero; (o(1) is the curvature:

El(fo(v)) =0 5 fl(ﬂl(v)) = —fz(fo(l),v) 5

» Curvature can be used to incorporate source terms or external fields
when £(1) is central:

loy1 (KO(]')a Viy .oy Vn) =0

This ensures /1 is a differential: (¢1)?> = 0



BV Formalism

» Build derived space of classical observables of a Lagrangian field
theory starting from its cyclic Lo-algebra (V,{(,},(—,—))

» Graded commutative algebra SymV/[2]:
ey = (=1)lel¥ly g

> Extend cyclic Loo-structure ({£e¥*} (—, —)**) to (SymV[2]) ® V:

£652(1)

1®4(1)

(a1 @ Vi, ...y an @ Vy) tar-a,®l(va,. .oy Vn)

> ext

(a1 ®@ v, 22 @ vy = taja(vi,n)

» Choose dual bases e € V , ek e V* ~ V[3] and
contracted coordinate functions ¢ = ef® e € (SymV[2])® V



BV Formalism

» BV Action Sgv € SymV/([2] is analogue of curved Maurer-Cartan action:

1))
Spv = %(:) ((n i)l)| <€,£2xt(€®n)>ext

» (Classical) Master Equation: {Sgv,Sev} = 0 ,
with the BV antibracket {p,v} = (p,¥) for ¢,¢ € V[2]

> (QBV)2 = 0 where Qv = {SBV,—}

> Classical observables (SymV/[1]* ~ SymV/[2], Qav,{—, —}+)
form a Py-algebra:

—Quv{p, ¥} = {Qove, ¥} + (1) {, Quvt} compatibility
{o. 0} = (1)1 g, 0} symmetric

{o., {¥,x}} = £{¥, {x, 01} £ {x, {p;¥}} Jacobi identity
{o.vx} = {e.vtx+v{e x} Leibniz rule



BV Quantization

» BV Laplacian Agy : SymV[2] — (SymV/[2])[1]:

s Apv(py) = {p, ¢}
Apv(ab) = Apv(a) b+ (—1)'aApv(b) + {a, b}

Apy(1) = 0 = Agv(yp)

Doy (p1---pn) = Zi{@h%‘} ©1- @i P on

i<j
Implements Gaussian integration/Wick's Theorem
> Satisfies (Apy)? = 0 , Apy(Sev) = 0
> (QF,)> = 0 where QF, = {Spv,—}+hAgy

> Quantum observables (SymV[2], Q%) form an E;-algebra
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Homological Perturbation Theory

Propagators determine strong deformation retracts of V[1]* ~ V[2]:

)
/—LN(V[Z] 61) 71'1,2::]10, v —1 = liy+~v60

<~ 7 — vy , Yo = 0, 7ty =0

(H*(Vv[2]),0)

-

Sym V[2], 41)

’—IN(

Observables:  (Sym H*(V[2]),0) o

Maps Z and [T extend ¢ and 7™ as commutative dg-algebra morphisms:
Z(al - [n]) = eli]---efpa] 5 Npr---9n) = w(e1) - 7(en)
(t7)? = vm: V[2] — H*(V[2]) splits V[2] = V[2]* @ H*(V[2]):

Sym V[2] = Sym V[2]" ® Sym H*(V[2])

Put (o1 o0 @ [3]) Z i i (e ) P en @ Y]



Homological Perturbation Theory

NG
> Let S = (660 + 3 i (66 E)™

» Homological Perturbation Lemma: With 6 = {Sint, —} + i Agv, there
is a strong deformation retract

%

L (sym VIl Qi)

(Sym H*(V[2]),4 )

-
where M = M+M(1 -6 = Moy (50
k=0

> (p1---@n) = N(p1---p,) € SymH*(V[2]) are (smeared) n-point
correlation functions on space of vacua H®(V/[2]) of the field theory

» Evaluated on a particular vacuum this gives the usual numerical
correlators of perturbative quantum field theory around this vacuum



Scalar Field Theory

>V = VieWe , Vi = Vb = CORY) , g Vi, ¢' € Vs:

VL = |:|+m2

» Maurer-Cartan equation:

©)

(B dn) = (1)) A, gy

®n

Fy = (o) +Z( D) (%) = @+m) o+ %qﬁ" =

n>2 n>2

» With the cyclic inner product (¢, ¢*) = / d% ¢ - ¢, the

Maurer-Cartan action is:

e
s = 2ion@)+Y CHT 6 0(65)

et (n+1)!

/ddx %¢(D+m2)¢+z A;Il 9"

n>=3
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Scalar Field Theory
Plane waves e (x) = e ¥ = (e"(x))" , (", &) = (2m)?5(k—p)

Interactions:

Ao ]
Sint = Z/k n!1(27r)d6(k1+--~+kn) e e e SymV[2]

Deformation retract: H*(V[2]) = 0 for m® > 0:

9

©, 0)/—2j (V[Q],Kl) G = ()t = (O+m?)?!

F
_ ()
Correlation functions: (C,0) :i (SymV[2], QBV)

Go(pr, o pn) == 3 M (ABpy T+ {Sime, —} )" (e -+ ™)
k=1

Only M(1) = 1 is non-zero (as m = 0) — this is a general proposal!



Scalar Field Theory with External Sources

» Couple to external fields J € C*(RY) by adding ¢ : R — Vs
with central curvature 4y(1) = J

» Curved Maurer-Cartan equation: Fy = —{o(1) = —J
» Curved Maurer-Cartan action:

S; = S+(6,b(1) = 5+/dde-¢
» Curved homological perturbation theory:

St = St + (&) = S+ [ Jlko) €
ko

where J(k) = /ddx e kX J(x)



Scalar Field Theory: Examples
1. 4-point function of free scalar field (A, =0):
Gi(p1s-. . ps) = (hApyT)’ (- e™)
= G3(p1, p2) G2 (p3, p2) + G2 (p1, p2) G3 (P2, pa) + G3 (p1, pi) G2 (P2, p3)

(2m)? 8(p1 + p2) ;

5 > Wick's Theorem
pi +m

where GJ(p1,p2) = —h

2. 2-point function at 1-loop in A ¢*-theory (A3 = \):
Ga(p1sp2) = (hApy )’ {Sine, [ (e™ 7))}

__BA (2m)?(p+ p2) 1 en)(p At p2)
- i "

2 (pi+m*)(p3+

e = Mt ()

This identifies the self-energy

- é/ d’p 1
R 2 ) (@n)d p2+m?




3.

Scalar Field Theory: Examples

1-point function at 1-loop in A ¢3-theory (A2 = \):

~ A (2m)4 6(p) 1
Gi(p) = hlbev T {Sie, [ ()} = —h 3 Pim | Rt m

Eliminate tadpoles with curvature: £(1) = YEeRC W,

Adds linear counterterm Y ¢ in curved Maurer-Cartan action, modifies
Sint in BV formalism by addition of

Sy = (ENA) = Y / (2)7 (k) &*

Full 1-point function at 1-loop:

o A@nsp) [ 1 (27)? 8(p)
Gi(p) = hE P2 + m? /kk2+m2+y P2+ m?

Cancels all 1-loop tadpole contributions if Y = h,% /k ﬁ



Schwinger-Dyson Equations: Textbook Approach

» ‘Quantum equations of motion’ for correlation functions follow from
invariance of path integral measure under infinitesimal variations of fields:

0 = 3 [ 76 5555 (00 600) )

n o 1 )
D 8= ) (9(0) )+ 0lo) = (800):+600) 55655)

» Example: In X\ ¢°-theory after Fourier transformation to momentum
space:

(6% + m) (H2) (pr) . en)) +5 [ (B006) e = K)3pr)-- en)

fhz (@m)* 5(p + ) (B(pr) -~ &(pr) - Hpn))



Schwinger-Dyson Equations: Algebraic Approach

Recall: Homological Perturbation Lemma gives a strong deformation retract

B &)
(SymH*(V[2]),6) S (Sym V[2], Qfty = £1+9)
with & = M(L—6MN)*6Z , M = M(1—46T)"% This implies:

» Lemma: ﬁoQE’V =0

Proof: M is a cochain map: Mo Ql, = oM. Sinceonly MN(1) = 1
is non-zero and §(1) = {Sint,1} + FApv(1l) = 0, right-hand side is 0.

» Standard identities obeyed by correlation functions in quantum field
theory are corollaries of this (e.g. Ward-Takahashi identities in QED)

» Algebraic Schwinger-Dyson Equations: Precompose with contracting
homotopy I' and use ¢1ol+T ol +1 = Zoll to get recursion relation:

M="N+MNodol



Schwinger-Dyson Equations: Wick’s Theorem

In free scalar field theory with QSS = /{1 + hAgy only even-multiplicity

correlators are non-zero:

Go(p1y- . pan) = M(eP---e”) = N(hApyT)(e™---ePn)

Expanding out right-hand side using definitions gives recursion relations

- 1 ~ ~ ~ ~

GZOn(p17~--7p2") = Z Z G20(pl7pj) G20n72(p17'"7pi7"'7pj7"~7p2")
i#j

_, (2n)75(pi + py)

=0
where Gy (pi, pj) = P2+ m?

Symmetrization of standard equations, due to ‘symmetric tensor trick’
used in fattening of maps for Homological Perturbation Lemma

L 1 LA
Solution is Gg,,(pl,...,pgn) = E | | Gg(pa(gkfl),pa(zk))
: o€Sy, k=1



Schwinger-Dyson Equations: Interactions
> With Qf, = 01+ hAgy + {Sint, —} recursion is

Golpry-- s pn) = M(RBuyT) (™ - ™) + M {Siue, T (" --- &™)}

» Expanding out right-hand side using definitions gives recursion relations

~ 1 ~ ~ N N
Gn(P17~~~:Pn) = ; Z G2O(P17PJ) Gn—2(P17---,Pi7---,Pj7~~7Pn)
i#)

n 1 J
2 G RPN [ en et ke

yeeny

X G~ﬂ+f—2(p17 <oy Pi-1, kla R kr—lva-l? e vp”)

» Example: n =2 in \¢>-theory:

/\/ Gs(k, pL — k, p2) /\/ G3(p1,k p2 — k)

é ) = )
2(p1, p2) 3 (p1, p2 P2+ m? P2+ m?



