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lgor Batalin

* April 1987, on a bus in Trieste: discussion with Renata Kallosh, who
then organizes my participation to a “Quantum Gravity seminar” in
Moscow, end of May 1987.

* At Renata’s place: Igor Batalin for a further discussion on
“Symmetries of superparticle and superstring action”

e (we had no smartphones yet: no picture)



What | learned from Igor Batalin

* The famous formalism to look at symmetries and quantization.

* We continued in the following years with this formalism.
We had chosen Lagrangian Batalin-Vilkovisky formulation
In Brussels: Hamiltonian Batalin-Vilkovisky formulation

e Further work on that with
Renata Kallosh, Walter Troost, Peter van Nieuwenhuizen, ....

* What | learned in person from him that evening:
“In order to be able to drink a lot, you have to eat a lot”.



Quantum theory

* Which is the measure ? related to regularization procedure.
* changing measure <= changing regularization <> changing M;

* one method: Pauli-Villars (PV): field and PV partner of opposite statistics
enter simultaneously in the measure, which is then invariant for symmetries
apart from the mass terms of PV fields.

The choice of regularization is the choice of the mass term of PV fields.

Anomalies =gy [ P2 A@e) cogov i

b ! __9 0
A@,0%) = AW+ (W, W) 5= Sai0s
- 2—%(S,S)+[AS+1(S,M1)]+....

W. Troost, P. van Nieuwenhuizen and AVP, 1990



This talk further

Finiteness calculations and counterterms of maximal supergravity
Repetition on first construction of N=8 in D=4 from D=11
Symmetries of N=8 and a remark of E. Cremmmer and B. Julia
Cosets with different gauge fixings

Duality: as proper symmetry and enhanced duality

o U s Wwh e

Various supergravities in D=4 and D=6
Conclusions



1. Finiteness calculations and counterterms of
maximal sugra

Ser = K2 (Ler—1) /d4NdD:B det £ L(x,0) G/H coset space

supergravities

* L., critical loop order where the first counterterm exist that is global
G and local H invariant

* (for lower loop, e.g. L=7 in N=8, we have to integrate over subspaces,
breaking the H symmetry)

eeg.D=4: L., =N, D=5 L., =6

* But divergences are found below this order: e.g. L=5 at D=5
Z. Bern, J.J.M. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban, 2304.07392

Local H-symmetry and G-symmetry
must have anomalies!

D=4 cX'>4 no UV divergences so far _

R. Kallosh, 2304.13926; 2312.06794; 2402.03453; 2405.20275.

All D>4 UV divergences are at loop order below critical! ==



2. D=11 to D=4, N=8

* Step by step dimensional reduction: i= 1,...7 times: x™ = {x#,y}
2¢p (g,uu + AMAV A,u)

7 times: defining for i = 1,...,7: ¢; and 2-forms F(?? = d A1)
* Further any p-form in the higher dimension

[t = qAP) = potl) 4 p®) A (dy + AD)
FPtD = q4® — qAP=1 A A1) ) — qae—1



Scalar sector in D=4

D=11 | gu, A®),
D =10 Juv ©1, -’4(1)17 A(B)v Ag2)7
D=9 Guv, P2, -’4(1)27 ©1, -’4(1)17 A(0)127 A(S)v Aéz)a ASQ)a A§12)

D=4 scalars : ; or @, A, AE% i>j>k D=4 2-forms:
7 +7%6/2 +7*6*5/6 =63 A,Ez) which in D = 4 dualized to 7 scalars: x*

~2L0 = +d@AdG+ Y B P EI AR LS P S F O A F O LN e B gD aGHY
1<j<k 1< j 7

F)=dAD),  FOL=dA® 0 G =y,



3. Symmetries of D=4, N=8

—2Ly = #dGAAGH > Bt P FU ARG LN 8Py L A F —I—Ze @ E GG

17k i1jk
1<j<k 1<jJ

1 0 i
z(jk) _ dAgj.z: ’ ]:(1) J = d‘A(O 70

Shift symmetries of ¢ form a 7d CSA H
shifts of other 63 scalars are roots E*/* Ej , B; with weight vectors :

azgk: b 79 az

gii_l_l and @103 are the 7 simple roots with inner products represented as

{H, E'* Eji, E;} generate the Borel subalgebra
(Cartan subalgebra + positive roots) of E-,

70 scalars described by representative of E- Viwa = exp (A7, E;* + Ay, BV + ' E;) exp (%

Gyt = dx;
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Cremmer-Julia, 1979 :“we have a candidate for the bosonic part of the N = 8 supersymmetric action .. but in a dissymetrical form.
This is to be contrasted with the lowest order results of [de Wit, Freedman, 1977] where a global SO(8) internal symmetry is
manifest. In the next chapter we shall restore this symmetry”. Then they go to symmetric gauge ...

Slide of Eugene Cremmer,
Trieste 1981 rhsrenee WE dame oW TAT Twas evicTs
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0= SUPEREBATITY . Seorpiemn\TY LyPgRiRAVITY |

Cremmer and Julia, 1979: “The key operation in what follows, is the exchange of the order of elimination of two fields and is allowed classically ;
the quantum theory however depends on the choice of dynamical fields and requires a careful computation of functional determinants arising
when one integrates over Gaussian fields. So let us discuss only the classical transformation.”



G=HoK Supergravities (higher N)

o (T4} = {M;,K,} have symmetric algebras
4. Coset gauge fixings M, H c H
H, K] c K

V(z) — gV(z)h~'(x) representative in G. K, K] C H, H is max. compact part

* Symmetric gauge: preserves global H-symmetry
) = e¢aKa eelM'ﬁ ¢%: scalars in the manifold; ' gauge fixed by local H to 0.

polar decomposition : matrix = symmetric x orthogonal

Vaym (6%) = e” %o € exp(K) a=1,...,ng

 l[wasawa gauge (or: triangular gauge): does not preserve H-symmetry

G= CeN &N CSA + positive + negative
= S oN Borel subalgebra { t,}+ negative
Viwa = e 'ta ¢ exp S (before gauge fixing: Iwasawa decomposition G= KA N )

* Are they really equivalent, or anomalies to go from one to the other ?

They are all unitary gauges: gauge fixing function depends on fields, not on derivatives - no propating FP ghosts



Comparison SI(2,R)/U(1)

* Cartan subalgebra and positive root 77 _— (1 0 ) jo (0 1)
0 -1/ 0 0

* Coset representative in lwasawa gauge

_ 1 e /2 —ye¥/?
Viwa =€ “Fe QQDH:( 0 éC‘P/Q )
_ -1 — o0 1
1=V dV=e"K, +w M (Ko} ={H,E+E"}, My=E-E"
{e"} = 3{dp,e¥dx},  w'=ie¥dyx.

et @e' +e? ®e? = (dp)? + e**(dy)?

* compare N=8

70 scalars described by representative of E-, Viwa = exp (A7, E;* + Ay, BV + ' E;) exp (%93 ﬁ)

—2Ly = *xd@-Ndg+ Z eaﬁ'j’“"’a*Fi(jl]g/\Fig-l,g—l—Z egij'@'*f(l)ij/\}"(l)ij+z e*aﬁ“"ﬁ*GEl)/\Ggl)

i<j<k i<j i



Comparison SI(2,R)/U(1)

» Cartan subalgebra and positive root H = <(1) _01) ’ E= (8 (1])

* Coset representative in lwasawa gauge v, — c-XFe 3¢H
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() = —V_ldVZGGKa+W1M1 (K.} ={H, E+E"}, M, = E—-E"

{ea} - %{d(roaede}: w' = %ede-
et @e' +e? ®e? = (dp)? + e**(dy)?
* Symmetric gauge

sinh r

Viym =e? Ko = e HHO*(B+E") _ 1, coshr + ¢°K,

coshr + ¢! —Sinrh - P —Sin,ﬂh - ) 1 i 9
= 2 sinh r Lsinhr | s ¢ =rsinf, o = rcosd
( ¢ coshr — ¢ #520

dr

% — 7¢(1._ Jrgabqb
r

”@d@, w! = —(sinhr)2dd

1
e! @ e’ +e® ®e® = (dr)® + ~(sinh 2r)*(d#)?
(]51 — (]52 rigid symmetry remains. 4



5. Duality

S(F.6) = [ [elmAun(@) FA PP — Lo (Re Nus(6) FAFE

A B=1,...n
 M.K. Gaillard and B. Zumino (1981) in D=4:
Transformations involving gauge field strengths and their duals, forming a symplectic group
mixing field equations and Bianchi identities, in general not leaving the action invariant.

Transforms the coupling MNag(¢) depending on fields and coupling constants.
C.M. Hull and A.V.P. hep-th/ 9503022. “*Pseudo-Duality”: Dpseudo = Diff (M) x Sp(2N;R) ,
For proper symmetry: must be an isometry of scalar manifold: Iso(M) C Sp(2n; R)

Dprop = Iso(M) C Iso(M) x Iso(M) C Iso(M) x Sp(2n; R) C Dpseundo

But there is the remainder (up to linear redefinitions of the vectors GL(n) ):
“Enhanced duality group”

in earlier work: Ferrara, Scherk, Zumino, 1977; Cremmer, Scherk, Ferrara, 1978; de Wit, 1979; Cremmer and Julia, 1979
In Hamiltonian form: M. Henneaux, B. Julia, V. Lekeu and A. Ranjbar, 1709.06014



Duality groups in 4 and higher (even) dimensions

* Relates g=D/2 forms F(@=P+1) = dAP to their Hodge duals in D dimensions
1

D=2, F9=—=F, ,e"A-Ae"
q:
() _ 1 L b, by a1--aq
FO = Fapa, € Ao Aeie o,
* * 1(q) 1 1 ay--—a 1 c1 c b1---b ¢+l p(a)
F = aFaL--aqagbl.--bq qae AL qgcl"'cq = (_) F

for 1 time direction.

This implies a real structure for g odd; largest duality group will be orthogonal if D=4m+2
and complex or antisymmetric for g even; largest duality group will be symplectic if D=4m.

E.g. D=4: g=D/2 =2, p=1: vector fields give symplectic symmetry.

D=6: g=D/2=3, p=2 antisymmetric tensors give orthogonal symmetry
For D=4 with n vectors Sp(2n;R); max. sugra : n=28 Sp(56;R)

D=6 with n 2-tensors SO(n,n;R); max sugra: n=5 SO(5,5;R).



Enhanced duality

In general: dualities define a class of actions.

* the Lagrangian is not uniquely defined (it can always be reparametrized via an electric-
magnetic duality transformation) and neither is its invariance group.

 there exist different Lagrangians with different symmetry groups

B2 = Br7)(R)\Sp(56, R)/GL(28, R)

duality: 7. » /
56*57/2= 1596 Bernard de Wit, Henning Samtleben, Mario Trigiante
0212239 and 0705.2101
modulo 133 modulo 282 = 784
scalar reparam. vector reparam. (not mixing eom and Bianchi)
Double quotient
dimension of the where X(ias\;(/ngoup and
double quotient : 1596 — 133 -784 =679

G,Y are subgroups of X



no enhanced duality in D=6

e But not in D=6, (2,2) supergravity:
pseudo-duality group from 5 two-forms
(reduction of D=11 3-form over 11-6=5 circles): SO(5,5;R).

* That is also the duality group E11_¢11-¢ = E55 = SO(5,5; R).

a123

o o ° /o/ /0/
bl b5 b3, b5 b bo -




6. Various supergravities

e Same amount of supersymmetry; different gauge fixings of H

|.  Supergravity with G/H described in symmetric gauge:
where ¢ is in the noncompact part of the algebra;
local H symmetry = R-symmetry 4D: Cremmer Julia, 1979 de Wit, Nicolai 1982

6D Tanii, 1984 Bergshoeff, Samtleben, Sezgin 2008

Il.  Dimensional reduced from higher dimension : o
coset in Iwasawa or partial Iwasawa gauge. oD from o Pogg e Ferrara and Hedo, 2002
Some scalars necessary have polynomial dependence;
less symmetries (no global H remaining)

classically the same by duality transformations

Cremmer and Julia, 1979: “The key operation in what follows, is the exchange of the order of elimination of two fields and is allowed classically ;
the quantum theory however depends on the choice of dynamical fields and requires a careful computation of functional determinants arising
when one integrates over Gaussian fields. So let us discuss only the classical transformation.”



L _
D :4 i=1,...,8; @ijki): 35 complex or 70 real ¢, Pijke = £ q€ijktpgmn ™"
linear representation of SU(8)

metric G=H ¢ K
28 vectors 133=63 + 70
70 scalars E. SU(8) 5(;((2) () 1y = %d;ijmncbmnke
- considered as 28 x 28 matrix
. a cosh ¢¢ cbsmh il 0 bii
_ P Ko __ a _ _ 17kl
Symmetric gauge Veym = Viym =€ = ¢smh 63 cosh qﬁgb , 'K, = gmva

Cremmer Julia, 1979 de Wit, Nicolai 1982

D=5 G=H & K

78 =36 + 42

metric B In a symmetric gauge:

27 vectors Eg  USp(8) _f6(6) 42 scalars ¢ 4pcq4 (repr. of USp(8))

42 scalars USp(8)
then dim.red. on gircle to D=4 Vparab = 0@ tx 0@ Tr oD A=1,...,27: r=1,...,42
—> supergravity |l A abed

Vpartial Iwa — e £ ed) Kabed eaD
l Andrianopoli, D’Auria, Ferrara and Lledo, 2002
E E v Sezgin, Nieuwenhuizen, 1982
UG 6(6) v 0(1, 1) % eXp(NpT 2]) 7024241427 Cremmer, Scherk, Schwarz, 1979

SU(S) USp(S) (Spontaneously broken N=8 supergravity)



D=5

Iwasawa

D=4 D=4 D=4 D=4
symmetric s saE Parabolic Partial Iwasawa
D+1 gauge D+1 gauge
Veym = o?" Ka ¢ oxp K Viwa = €?' 10 € exp S
Supergravity | SupergraVity I

gauged: 1/8-BPS =8 extremal black holes Non-BPS 28 extremal black holes



D=6 analogue I
* !2. B3 !4 //(
* Es 5 = S0(5,5) is G isometry group of scalars,

but also duality group since there are 11-6 = 5 two-forms (from A ,,,;) with
field strengths D/2- forms
* Symplectic spinors (2,2): R-symmetry group is USp(4) x USp(4)= SO(5) xSO(5)
S0(55)
S0(5)xS0(5)’

described by 16 x 16 vielbein matrix
V.. with SO(5) spinor indices p, 1 =1,2,3,4, a, & = 1,2, 3, 4.
a,a=1,...5, A=A{a,a}=1,...,10

* Coset

ABF

* Before gauge f|X|ng V =e1¢ Tan \ [ap = I'al'p) with 10 x 9/2 = 45 independent entries pAE

¢adrad) PP = qbé“i’ =0 25 scalars ¢*¢

DO | =

* Symmetric gauge Veym = exp (

* That gives supergravity I: of Tanii-Bergshoeff-Samtleben-Sezgin

Gauge fixings: forthcoming paper R. Kallosh, H. Samtleben and AVP



D=6 supergravity |

derived by Cowdall, 1998, from
7D supergravity of Pernici, Pilch, van Nieuwenhuizen, 1984,
and compactified on a circle, in the limit of vanishing gaugings

* D=7

metric

10 vectors

14 scalars (G/H),p=SL(5)/SO(5)
S0(5,5) SL(5)

x O(1,1) x exp(n1?) in D=6 supergravity I

SO(5) x SO(5) ~ SO(5)



Conclusions

* Finiteness calculations suggest anomalies of G/H symmetries in D>4
and not in D=4, N > 5.

* Can enhanced dualities, which are present only in D=4, be a clue ?

By different gauge choices of the coset spaces, some due to
reductions from D+1, there are different supergravities.
These are classically equivalent, but the quantum equivalence should
be proven.

* All this: from analyses by R. Kallosh in papers in the previous year.
* In this investigation, we made technical progress for the ‘symmetric’ gauge fixing of D=6 supergravity,
R. Kallosh, H. Samtleben and AVP, in preparation



