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From Lie Algebras to L,-Algebras
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Lie Algebras

Lie algebras (bracket picture):
@ Vector space g
o Lie bracket [-,—] : g x g — g such that [X,Y] = —[Y, X] and
(X[, 2] = [[X, Y], 2] + [V, [X, Z]]

@ Basis e, defines the structure constants fu,¢ via [eq, ] = fap“ec

Lie algebras (Chavelley—Eilenberg picture):
@ Dual vector space (g[1])* (all elements have degree 1)
@ Basis £% (of degree 1) are coordinate functions on g[1]
@ Vector field Q := —%fabcfafbagc of degree 1 on g[1], and Q? =0
< Jacobi identity
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L..-Algebras

L,-algebras (Chavelley—Eilenberg picture):
o Graded vector space £ = @, , £; with basis e, and the dual
(£[1])* with basis £*
o Vector field Q i= Y, +4 fa,..q, 0% - €%
and Q? = 0 < homotopy Jacobi identity

‘gb of degree 1 on £[1],

0

o The constants f,,...,° define brackets j1;(eq,,---,€a,) =t fa,a, €

L,-algebras (bracket picture):
o Graded vector space £ = @,_, £

@ Degree 2 — i graded antisymmetric multilinear brackets
i & X - x £ — £ subject to the homotopy Jacobi identity

DT 1 (1 (X1 Xo())s X1y - - Xo(iy) = 0

i+k=io(ji)

with o(j;1) the (4,7 — j)-unshuffles i.e. o € S; with
o(l)<---<o(f)ando(j+1) < <o(i)
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L..-Algebras

L,-algebras (bracket picture):
e u? =0 making (£, 1) into a complex

M1 M1 M1 M1
‘—’»871—’}30—’»81_""

@ 41 is a derivation for the bracket po
o 1a(u2(X,Y),Z) £ ps(u1(X),Y, X) + cyclic= +u1 (u3(X,Y, Z))
i.e. the Jacobi identity is violated in a controlled way
Special cases:
o Lie algebras: £ = £y and p; = 0 for i # 2
o graded Lie algebras: p; = 0 for i # 2
o differential graded Lie algebras: p; = 0 for i > 2

Lo,-algebras are generalisations of differential graded Lie algebras )
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Cyclic L,-Algebras

Lie algebras:

@ An inner product is a map (—,—): g x g — R that is
non-degenerate, symmetric, bilinear, and cyclic
XY, 2]) =<{Z,[X,Y])

@ Dually, it is given by a symplectic form w of degree 2 on g[1] such

that Low =0
L-algebras:
@ An inner product or cyclic structure is a map {(—,—): £ x £ —> R of

degree —3 that is non-degenerate, graded symmetric, bilinear, and
CyC“C <X1, /,Li(XQ, ey Xi+1> = i<Xi+1, ,ui(Xh e ,X1)>

@ Dually, it is given by a symplectic form w of degree —1 on £[1] such
that Low =0
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Morphisms of L.-Algebras

Lie algebras:

@ Given two Lie algebras (g,[—, —]) and (¢,[—, —]’), a morphism
¢:g— g satisfies ¢([X,Y]) =

[
@ Dually, we simply have g0 Q = Q' 0 ¢
Loo-algebras:
@ Dually, we again have po Q = Q' 0 ¢

@ In the bracket picture, for two Lo-algebras (£, p;) and (£, ), a
morphism ¢ : £ — £ is collection of graded antisymmetric multilinear
maps ¢; : £ x --- x £ — £ of degree 1 — i subject to

D> 2ok (1 (Ko@) Xo() XoGi41)s - - Xoi))

j+k=i o ()

SDIEND VD)

j=1  kit-tkj=io(ky,..., kj_1;1)
t I’L; (()bkl (Xa(l)a ceey XU(k1))7 ey ¢k]‘ (Xo(k1+"'+kj,1+1)a sy XU(Z)))

@ A morphism is called a quasi-isomorphism provided ¢; induces an
isomorphism H, (£) = H}, (£')

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Homotopy Maurer—Cartan Theory
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Homotopy Maurer—Cartan Theory

e For (£, ;) an Ly-algebra, we call a € £; a gauge potential and
define its curvature as

fi=m(a) + gpa(a,a) + - = Y hpia, ..., a)

=1

@ Due to the homotopy Jacobi identity, f satisfies the Bianchi identity

pa () + pala, )+ = Y Fpivala, ... a0, f) =0

=0

@ For ¢y € £y, gauge transformations act as

Seo = p1(a) + pa(a,co) + -+ = 2 Lpiva(a, ... a,c),
=0
500f = ,LLQ(f,CO) +ee = Z %/J’iﬁ-Q(a’a ceey @, fa CO),
>0

and there are higher gauge transformations with c_; € £_j and

— 1
Oc_prCof = Z aivi(a, ..., a,c ;1)

120
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Homotopy Maurer—Cartan Theory

@ The equation f = 0 is called the Maurer—Cartan equation and solutions to
this equation are called Maurer—Cartan elements

@ For (£, ni,{—,—)) a cyclic Ly-algebra, the Maurer-Cartan equation
follows from the gauge-invariant action functional

S = %<a,u1( )>+ 3,<CL /.Lz(a a = Z (Z+1)|<a Hz( )>

=0

@ A morphism ¢ : (£, ;) — (£, ;) acts as on a gauge potential and its
curvature as

a»—»a':=271!¢i(a7...,a) = fo,=Zfly¢i+l(aa"'7a7f)

=1 =0

@ Provided a is a Maurer—Cartan element, gauge equivalence classes [a] are
mapped to gauge equivalence classes [a’]| and so, for quasi-isomorphisms,
the corresponding moduli spaces are isomorphic

@ A morphism is called cyclic provided (X, Y) = {(¢1(X), ¢1(Y))" and
Zj+k:i<¢j(Xla ceey ) ¢k( KA TRER 7X’i)>l =0 and so, S[CL] = Sl[a’/]
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Example: Yang—Mills Theory

@ Let M be a 4-dimensional compact oriented Riemannian manifold
without boundary and let g be a simple Lie algebra with inner
product {(—, —)4. The following data constitutes a cyclic
L-structure:

Ql(M g) NI:ZM*dM QB(M g)
%,7—/ %/7—/
::,21 ::£2
with
p2(Ar, Ag) i= dar*[Ar, Ao] + [Ar, *das Ao] + [Az, xdar Ay ],
U3 (Al, A27 A3) = [Al, *[AQ, Ag]] + CyCliC

and

(wr,w2) = fM<W17WQ>g

@ The Maurer—Cartan action becomes S = £ {, (F,*F),
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Applications in Quantum Field Theory

Application I: Batalin—Vilkovisky Formalism
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Batalin—Vilkovisky Formalism

BV formalism in a nutshell:

@ Resolve the quotient space of observables:

o Introduce ghosts to resolve gauge redundancy (‘BRST")
o Introduce anti-fields to resolve equations of motion
o Differential Qgv encodes gauge symmetries and equations of motion

5SBRST
(o)

e BV field space £gy[1] := T*[—1](LrrsT[1]) is a graded vector
space that comes with a natural symplectic form wgy := d¢™ A ¢
of degree —1, and @Qgy is Hamiltonian with Hamiltonian Sgy and

2,=0< {Sev,Sev}v =0

@ Dually, we obtain a cyclic L-algebra (£gy, ti,{—, —))

QBV¢ = QBRST¢ + - and QBV¢+ = + 4+

@ BV action is a Maurer—Cartan action

BV formalism can be applied to any theory but it is essentially the only
way when quantising theories with higher gauge symmetries J
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Yang—Mills Theory in the Batalin—Vilkovisky Formalism

@ Let M be a compact oriented Riemannian manifold without
boundary and let g be a simple Lie algebra with inner product

{—,—)g. Consider
Q0(M, g) "= Q1 (M, g) TN 03 (M, g) S 0 (0 )
— % — - Y
=:£p3¢c =:£13A =:£53At =:£33cT
with
po(c1,c2) = [c1,e2], pa(c, A) = [c, A], wpa2(c,AT) = [c, AT],
pa(c,c) = [e,ct], pa(A,AT) = [A, AT,
po (A1, Ag) i= dar*[Ar, Ao] + [Ar, *das As] + [Ag, xdas Ay,
p3(Ar, Az, Az) i= [A1, x[Ag, A3]] + cyclic
and (wi,wa) == £ §, (w1, wz)

@ Then, witha=c+ A+ AT + ¢, the Maurer—Cartan action
becomes

S = JM {%<F, xFyg — (AT, Ve + 2t [e, c]>}
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Relative L..-Algebras and Homotopy Maurer—Cartan Theory

Cyclic Ly-algebras are suitable for theories on manifolds without
boundary or when considering fields with appropriate fall-off. What about
theories where we have boundaries?

o A relative Lo-algebra is a pair of Ly-algebras, (£, ;) and (£7, uf),
and a morphism ¢ : (£, i1;) — (£7, u¢) between them

o It is called cyclic provided it comes with a map (—, —)¢ : £x £ > R
of degree —3 that is non-degenerate, graded symmetric, and bilinear

as well as a map (—, —)gs : £7 x £7 — R of degree —2 that is
bilinear such that ()(17 . 7Xi+1) — [Xl, . ,Xi+1]£ with

(X1, Xigr]e = (X0, (X, .., Xig1))e

+ > (BN, X)) k(X Xig1))eo
j+k=i+1

is non-degenerate and cyclic.
@ The Maurer—Cartan action now reads as

1
:Zm[a7...,a]g

=0
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Example: Yang—Mills Theory

@ Let M be a compact oriented Riemannian manifold with boundary
OM and let g be a simple Lie algebra with inner product (—, —),.
Take (£, u;) as before but because of OM, (—, —)¢ is not cyclic

o For (£7,19) we take

0°(0M, g) > Q1(0M, g) ® 0*(2M, g) > 0} ()M, g)

e 273 (0.8) Tevaar
with
(7)== (danrv,0), pf(a, B) == dans 3,
p2(v1,72) = [y, 72l w2y, (o, B)) = ([v, ], [v, B]),
pa(y,a) = [y,a"],
p2((a, Br), (a2, B2)) = [au, Ba] + [a2, Bi]
and

<’77a+>£9 = f <’Y7a+>gv <(041,ﬁ1), (a2=52)>25 = J <a1752>9
oM oM
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Example: Yang—Mills Theory

@ The morphism ¢ : (£, u;) — (£2, u9) is now

¢1(c) = clomr, ¢1(A) = (A, *xdnA)|om, ¢1(AT) = AT |onr,
¢2(A1, Az) = x[A1, As]lom

@ Then, witha=c+ A+ AT + c¢*, the Maurer—Cartan action
becomes

1
S=Zm[a,...,a]g

=0

[ (a4 w0, 6 )
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Applications in Quantum Field Theory

Application Il: Perturbation Theory and Scattering Amplitudes
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Homological Perturbation Theory

Homotopy Transfer:

@ Start from a deformation retract, that is, two quasi-isomorphic
complexes (£, p1) and (£, 1)) with

p
hC (’27.“1) <T (2/5/1‘/1)7
l=eop+hops+pioh, poe=1

where h is of degree —1 and called a contracting homotopy
e Consider higher products j;~1 on £ as perturbation
@ Recursive prescription as how this generates higher products ;=1
on £ so that (£, ;) and (£, ;) are quasi-isomorphic
Applications:
o For £ := H} (£): recover minimal model and tree-level Feynman
diagram expansion

@ Introducing another perturbation iiAgy yields loop-level Feynman
diagram expansion

@ Recursive character underlies Berends—Giele-type recursion relations
which exist for all field theories



Colour-Stripping as Factorisation

Cy-algebra ® Lo,-algebra = L..-algebra J

Explicit formulas:
L=CRL=PL&, &= oL,
ke, itj=k
f1(c1® 1) =de1 ® 01 + 1 ® pui(4y)

Examples:
e For € = Q'(M3), £ = g Lie algebra
— S for £ is the action for Chern—Simons theory
@ For € = Q‘(Md), L£=L 4.3® - ®Ly
— S for £ is d-dimensional higher Chern—-Simons theory

Colour-stripping in scattering amplitudes for a general gauge theory:
£ = C® g with kinematic C-algebra € and colour Lie algebra g J
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Strictification

Rendering a field theory cubic:
@ Simpler to analyse field theories with only cubic vertices

@ Any Ly-algebra is quasi-isomorphic to a strict L-algebra, that is, a
differential graded Lie algebra

@ This is called strictification

Examples:

@ The 2nd-order formulation of Yang—Mills theory
Syu, = 5 §,,C(F, *F)g is quasi-isomorphic to the 1st-order
formulation Sym, = §,,(B,*(F — $B))g for B € Q*(M, g)

@ More lateron ...

Strictification is used in the context of colour—kinematics duality J
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Colour-Kinematics Duality

Colour—kinematics duality of scattering amplitudes states that one can
arrange them such that the colour-stripped vertex is Lie-like, e.g. Jacobi:

Thus, vertices (i.e. cubic terms in action) should ideally look like

Gaafis gkl @V

with
® guq and flfc metric and structure constants of gauge Lie algebra

@ g;; and k:é.k metric and structure constants of kinematic Lie algebra

What is the kinematic Lie algebra homotopy algebraically? |
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Kinematic Lie algebra

o Factorise, i.e. colour-strip, the differential graded Lie algebra as
£ =C®g with (€,d, my) a differential graded commutative algebra,
d the kinematic operator, and my the interactions

@ Deformation retract

n( (& d) == (H3(9),0)
l=eop+doh+hod, poe=1

with h the propagator
@ Writehash=: 2 sothatl—bod+dob
e lfbisa second—order differential operator, the derived bracket

{X,Y} =b(m2(X,Y)) + ma(b(X),Y) £ ma(X,b(Y))
is a (shifted) Lie bracket

@ The derived bracket maps fields to fields: kinematic Lie bracket
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Colour—Kinematics Duality from BV™-Algebras

Algebraic structures:
e (¢, {—,—}): Gerstenhaber algebra
e (€,d,b,my) withdob +bod =0 is a differential graded BV algebra

A BV™-algebra is a differential graded commutative algebra ¢ with a
differential b of degree —1 that is a second-order differential operator
withdob+bod =M

A theory exhibits colour—kinematics duality, if its Ly-algebra is
quasi-isomorphic to a differential graded Lie algebra £ = € ® g with € a
differential graded commutative algebra such that € admits a
BVD—aIgebra structure with B =[]
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Biadjoint scalar field theory, b = [1]
S = Jdd(E {%Lpaz’z D@aa - %fabcfaz}g@ad%ObBQDCE}
Self-dual Yang—Mills theory in light-cone gauge, b = [1]

5= [d (366,000 + §e0, 10016, 00D}

Chern=Simons theory, for harmonic forms, b = +xdx*

5 J{%<A7dA>g LA A, Ay — (A*, Vg + Lt [e, by )
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Applications

Idea: Look for Chern—Simons-type formulations of field theories )

For Yang—Mills theory:

@ Holomorphic Chern—Simons theory on twistor space (self-dual sector)
@ ()-Chern—Simons theory on pure spinor space

@ Chern-Simons-like formulation on harmonic superspace

The first two: organising principles for colour—kinematics duality

(just as superspaces for supersymmetry)
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Applications in Quantum Field Theory

Application IlI: Yang—Mills Theory via Twistors
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Yang—Mills Constraint System

o Consider Euclidean N = 3 superspace IRgEIQ i= R x CON2 with
coordinates (x%, n%, §**) and set

DY = 0% +00ns, Dia = Oio + 13 0uas
and so ' ,
[Dia, D] = 26,7 0na
@ For g a Lie algebra, the covariantisation

[ éd’vé)] =0, [Vit:Vipl =0, [Via, Vil =26/ Vaa

is the constraint system of A" = 3 SYM theory; it is equivalent to
the equations of motion of A/ = 3 SYM theory on R*
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Cauchy—Riemann Ambitwistors

o Consider F' := Ilel‘)ll2 x CP' x CP" with A4 and g, as coordinates
on CP! x CP! and which comes with a quaternionic structure

(Aas o) = (Aa, fla)
o Define
ngF = Span{EFa EL7 ER? Eia E1}7
R . . 0 . 0
Ep = p* X0, ErL=Aa——, Er = |pl’paz—,
0)\d aﬂa
E' = \DL, E; = p®Di,

which is an integrable CR structure with [E;, E7] = 26,7 B
o Let A € Q%’é ®g. UndAer the assumption that there is a gauge in
which B, _ A =0 = ER _ A, the CR holomorphic Chern—-Simons
equation -
OcrA + %[A,A] =0

on F'is equivalent to the A/ = 3 SYM constraint system on ]Rilf

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Twisted CR Structure

Consider the CR holomorphic and antiholomorphic coordinates

Ni =N Aa, 0 1= 0% g, 7 = \MZ ,and @ == — | ‘%‘* and the new
basis
TR F = span{Ey, By, By, B, B},
B = EBr, Ef = EyL+0nEr, Eg:=Er—07Fr,

B =E' —0'Ep, Bl :=E; —5:Ep

with [EL, ER] = 20°n; B
Set g := e WO with By = %@m and Ey, = —%&m
and define the twisted CR structure
Tgpi o F = span{Vi, Vi, Vi, V', Vi},
Vi = gErg " = Er,
Vi=gELg™" = EL+ 0By, Vi=gErg™ = Er +0'n:iBw,

Vi=gE'g"' =0, Vi == gElg™' =0,

with [Vi, Vi] = 2079 Vi
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Quasi-Isomorphy

@ Let QOC’;L tw, red D€ those elements of Q%é ww that do not have CR

antiholomorphic fermionic directions and that depend CR holomorphically
on the fermionic coordinates

@ The differential graded Lie algebras (ro’ﬁ ® g, Ocr, [_—7 -1,

(Q%f‘{,tw ®g, éCR‘v tw, [— —]), and (Q%;{, tw, red @ 0 OCR, tw, red, [—, —])
are all quasi-isomorphic

@ Hence,
Ocr,twA + 3[A,A]=0 with V' _A=0=V,_A

412

is equivalent to the AV = 3 SYM constraint system on R .

@ Define the twisted CR holomorphic volume form

L

. F W W R 1.2 3
Qcrtw =0V AV AU AV AU ®UiV203V VU

and so

S = JQCR’ tw A {5<A (j/n(‘,R, 1,WA> + %<A [A, A]>}
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Semi-Classical Equivalence

BV action for twisted CR holomorphic Chern—Simons theory:
Scres = JQCR,tw A {%@47 Ocr, twA) + 3:(A, [4, A])
— (A", Ver,we) + HCH[C,CD}
BV action for first-order N = 3 supersymmetric Yang—Mills theory:
S, 1= [ {Bra) = KBLwB) = (A, — (B, [Boe])
+ et e, c]>} + ‘N = 3 completion’
The theories described by Scres and Sywm, are quasi-isomorphic via

homotopy transfer, that is, Sy, is obtained from Scrcg by integrating
out infinitely many auxiliary fields
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Conclusions
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The Homotopy Algebraic Perspective on perturbative QFT:

Perturbative QFT

Homotopy Algebra

fields of ghost number n
action principle

free part of the action
interaction parts
semi-classical equivalence
Feynman diagram expansion
propagator

gauge fixing

scattering amplitudes
Berends—Giele recursions
colour-stripping

elements of degree 1 — n in an Ly;-algebra
cyclic Lo,-algebra

differential 13

higher products p;~1
L,-quasi-isomorphism

homological perturbation theory (h, p,e)
contracting homotopy h

embedding e + ...

Maurer—Cartan action for minimal model
L,-quasi-morphism to minimal model
factorising L.o-algebra

Action and scattering amplitudes on equal footing: L.-algebras J
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Further Applications

@ The double copy i.e. gauge theory ® gauge theory = gravity can be
understood via homotopy algebras in terms tensor products of
BV™-algebras

@ Quasi-isomorphisms are not necessarily obtained by homotopy
transfer, however, one can always construct a span of L.-algebras
£1 «— £ — £5 such that the arrows are homotopy transfers; for
instance, T-duality can be understood this way

o L-algebras are the gauge algebras of higher gauge theory and the
infinitesimal versions of higher groups — higher differential geometry

@ Higher structures appear also in other contexts such as fluid
dynamics where incompressible fluid flows in d = 3 dimensions can
be understood via higher symplectic geometry
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Thank You!
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