Homotopy Algebra Perspective on Quantum Field Theory

Martin Wolf

UNIVERSITY OF SURREY

based on work done in collaboration with

L Alfonsi, L Borsten, B Jurco, H Kim,

T Macrelli, L Raspollini, C Saemann, C Young
and on the work of many others

Outline

- ullet From Lie Algebras to $L_{\infty} ext{-Algebras}$
- Homotopy Maurer–Cartan Theory
- Applications in Quantum Field Theory
- Conclusions

From Lie Algebras to $L_{\infty} ext{-Algebras}$

Lie Algebras

Lie algebras (bracket picture):

- Vector space g
- Lie bracket $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that [X,Y]=-[Y,X] and [X,[Y,Z]]=[[X,Y],Z]+[Y,[X,Z]]
- ullet Basis ${f e}_a$ defines the structure constants $f_{ab}{}^c$ via $[{f e}_a,{f e}_b]=f_{ab}{}^c{f e}_c$

Lie algebras (Chavelley-Eilenberg picture):

- Dual vector space $(\mathfrak{g}[1])^*$ (all elements have degree 1)
- ullet Basis ξ^a (of degree 1) are coordinate functions on $\mathfrak{g}[1]$
- Vector field $Q := -\frac{1}{2} f_{ab}{}^c \xi^a \xi^b \frac{\partial}{\partial \xi^c}$ of degree 1 on $\mathfrak{g}[1]$, and $Q^2 = 0$ \Leftrightarrow Jacobi identity

L_{∞} -Algebras

 L_{∞} -algebras (Chavelley–Eilenberg picture):

- Graded vector space $\mathfrak{L}=\bigoplus_{i\in\mathbb{Z}}\mathfrak{L}_i$ with basis \mathbf{e}_a and the dual $(\mathfrak{L}[1])^*$ with basis ξ^a
- Vector field $Q \coloneqq \sum_i \pm \frac{1}{i!} f_{a_1 \cdots a_i}{}^b \xi^{a_1} \cdots \xi^{a_i} \frac{\partial}{\partial \xi^b}$ of degree 1 on $\mathfrak{L}[1]$, and $Q^2 = 0 \Leftrightarrow \mathsf{homotopy}$ Jacobi identity
- ullet The constants $f_{a_1\cdots a_i}{}^b$ define brackets $\mu_i(\mathsf{e}_{a_1},\ldots,\mathsf{e}_{a_i})\eqqcolon f_{a_1\cdots a_i}{}^b\mathsf{e}_b$

 L_{∞} -algebras (bracket picture):

- ullet Graded vector space $\mathfrak{L}=igoplus_{i\in\mathbb{Z}}\mathfrak{L}_i$
- Degree 2-i graded antisymmetric multilinear brackets $\mu_i: \mathfrak{L} \times \cdots \times \mathfrak{L} \to \mathfrak{L}$ subject to the homotopy Jacobi identity

$$\sum_{j+k=i} \sum_{\sigma(j;i)} \pm \mu_{k+1}(\mu_j(X_{\sigma(1)}, \dots, X_{\sigma(j)}), X_{\sigma(j+1)}, \dots, X_{\sigma(i)}) = 0$$

with
$$\sigma(j;i)$$
 the $(j,i-j)$ -unshuffles i.e. $\sigma \in S_i$ with $\sigma(1) < \cdots < \sigma(j)$ and $\sigma(j+1) < \cdots < \sigma(i)$

L_{∞} -Algebras

 L_{∞} -algebras (bracket picture):

• $\mu_1^2 = 0$ making (\mathfrak{L}, μ_1) into a complex

$$\cdots \xrightarrow{\mu_1} \mathfrak{L}_{-1} \xrightarrow{\mu_1} \mathfrak{L}_0 \xrightarrow{\mu_1} \mathfrak{L}_1 \xrightarrow{\mu_1} \cdots$$

- μ_1 is a derivation for the bracket μ_2
- $\mu_2(\mu_2(X,Y),Z) \pm \mu_3(\mu_1(X),Y,X) + \text{cyclic} = \pm \mu_1(\mu_3(X,Y,Z))$ i.e. the Jacobi identity is violated in a controlled way

Special cases:

- Lie algebras: $\mathfrak{L} = \mathfrak{L}_0$ and $\mu_i = 0$ for $i \neq 2$
- ullet graded Lie algebras: $\mu_i=0$ for i
 eq 2
- differential graded Lie algebras: $\mu_i = 0$ for i > 2

 L_{∞} -algebras are generalisations of differential graded Lie algebras

Cyclic L_{∞} -Algebras

Lie algebras:

- An inner product is a map $\langle -, \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ that is non-degenerate, symmetric, bilinear, and cyclic $\langle X, [Y, Z] \rangle = \langle Z, [X, Y] \rangle$
- Dually, it is given by a symplectic form ω of degree 2 on $\mathfrak{g}[1]$ such that $\mathcal{L}_O\omega=0$

L_{∞} -algebras:

- An inner product or cyclic structure is a map $\langle -, \rangle : \mathfrak{L} \times \mathfrak{L} \to \mathbb{R}$ of degree -3 that is non-degenerate, graded symmetric, bilinear, and cyclic $\langle X_1, \mu_i(X_2, \dots, X_{i+1}) \rangle = \pm \langle X_{i+1}, \mu_i(X_1, \dots, X_i) \rangle$
- Dually, it is given by a symplectic form ω of degree -1 on $\mathfrak{L}[1]$ such that $\mathcal{L}_Q\omega=0$

Morphisms of L_{∞} -Algebras

Lie algebras:

- Given two Lie algebras $(\mathfrak{g},[-,-])$ and $(\mathfrak{g}',[-,-]')$, a morphism $\phi:\mathfrak{g}\to\mathfrak{g}'$ satisfies $\phi([X,Y])=[\phi(X),\phi(Y)]'$
- Dually, we simply have $\phi \circ Q = Q' \circ \phi$

L_{∞} -algebras:

- Dually, we again have $\phi \circ Q = Q' \circ \phi$
- In the bracket picture, for two L_{∞} -algebras (\mathfrak{L},μ_i) and (\mathfrak{L}',μ_i') , a morphism $\phi:\mathfrak{L}\to \mathfrak{L}'$ is collection of graded antisymmetric multilinear maps $\phi_i:\mathfrak{L}\times \cdots \times \mathfrak{L}\to \mathfrak{L}'$ of degree 1-i subject to

$$\sum_{j+k=i} \sum_{\sigma(j;i)} \pm \phi_{k+1}(\mu_{j}(X_{\sigma(1)}, \dots, X_{\sigma(j)}), X_{\sigma(j+1)}, \dots, X_{\sigma(i)})$$

$$= \sum_{j=1}^{i} \frac{1}{j!} \sum_{k_{1}+\dots+k_{j}=i} \sum_{\sigma(k_{1},\dots,k_{j-1};i)}$$

$$\pm \mu'_{j} \Big(\phi_{k_{1}} \big(X_{\sigma(1)}, \dots, X_{\sigma(k_{1})} \big), \dots, \phi_{k_{j}} \big(X_{\sigma(k_{1}+\dots+k_{j-1}+1)}, \dots, X_{\sigma(i)} \big) \Big)$$

• A morphism is called a quasi-isomorphism provided ϕ_1 induces an isomorphism $H^{\bullet}_{\bullet_1}(\mathfrak{L}) \cong H^{\bullet}_{\bullet'}(\mathfrak{L}')$

Homotopy Maurer–Cartan Theory

Homotopy Maurer-Cartan Theory

• For (\mathfrak{L}, μ_i) an L_{∞} -algebra, we call $a \in \mathfrak{L}_1$ a gauge potential and define its curvature as

$$f := \mu_1(a) + \frac{1}{2}\mu_2(a, a) + \dots = \sum_{i \ge 1} \frac{1}{i!}\mu_i(a, \dots, a)$$

Due to the homotopy Jacobi identity, f satisfies the Bianchi identity

$$\mu_1(f) + \mu_2(a, f) + \dots = \sum_{i \ge 0} \frac{1}{i!} \mu_{i+1}(a, \dots, a, f) = 0$$

• For $c_0 \in \mathfrak{L}_0$, gauge transformations act as

$$\delta_{c_0} a := \mu_1(a) + \mu_2(a, c_0) + \dots = \sum_{i \ge 0} \frac{1}{i!} \mu_{i+1}(a, \dots, a, c_0),$$

$$\delta_{c_0} f = \mu_2(f, c_0) + \dots = \sum_{i \ge 0} \frac{1}{i!} \mu_{i+2}(a, \dots, a, f, c_0),$$

and there are higher gauge transformations with $c_{-k} \in \mathfrak{L}_{-k}$ and

$$\delta_{c_{-k-1}}c_{-k} := \sum_{i>0} \frac{1}{i!} \mu_{i+1}(a, \dots, a, c_{-k-1})$$

Homotopy Maurer-Cartan Theory

- ullet The equation f=0 is called the Maurer–Cartan equation and solutions to this equation are called Maurer–Cartan elements
- For $(\mathfrak{L}, \mu_i, \langle -, \rangle)$ a cyclic L_{∞} -algebra, the Maurer–Cartan equation follows from the gauge-invariant action functional

$$S := \frac{1}{2} \langle a, \mu_1(a) \rangle + \frac{1}{3!} \langle a, \mu_2(a, a) \rangle + \dots = \sum_{i \geqslant 0} \frac{1}{(i+1)!} \langle a, \mu_i(a, \dots, a) \rangle$$

• A morphism $\phi:(\mathfrak{L},\mu_i)\to(\mathfrak{L}',\mu_i')$ acts as on a gauge potential and its curvature as

$$a \mapsto a' := \sum_{i \geqslant 1} \frac{1}{i!} \phi_i(a, \dots, a) \quad \Rightarrow \quad f \mapsto f' = \sum_{i \geqslant 0} \frac{1}{i!} \phi_{i+1}(a, \dots, a, f)$$

- Provided a is a Maurer-Cartan element, gauge equivalence classes [a] are
 mapped to gauge equivalence classes [a'] and so, for quasi-isomorphisms,
 the corresponding moduli spaces are isomorphic
- A morphism is called cyclic provided $\langle X,Y \rangle = \langle \phi_1(X),\phi_1(Y) \rangle'$ and $\sum_{i+k=i} \langle \phi_i(X_1,\ldots,X_i),\phi_k(X_{j+1},\ldots,X_i) \rangle' = 0$ and so, S[a] = S'[a']

Example: Yang-Mills Theory

• Let M be a 4-dimensional compact oriented Riemannian manifold without boundary and let $\mathfrak g$ be a simple Lie algebra with inner product $\langle -,-\rangle_{\mathfrak g}$. The following data constitutes a cyclic L_∞ -structure:

$$\underbrace{\Omega^1(M,\mathfrak{g})}_{=:\mathfrak{L}_1} \overset{\mu_1:=\operatorname{d}_M \star \operatorname{d}_M}{\longrightarrow} \underbrace{\Omega^3(M,\mathfrak{g})}_{=:\mathfrak{L}_2}$$

with

$$\begin{split} \mu_2(A_1,A_2) \coloneqq \mathrm{d}_M \star [A_1,A_2] + [A_1,\star \mathrm{d}_M A_2] + [A_2,\star \mathrm{d}_M A_1], \\ \mu_3(A_1,A_2,A_3) \coloneqq [A_1,\star [A_2,A_3]] + \mathsf{cyclic} \end{split}$$

and

$$\langle \omega_1, \omega_2 \rangle := \int_M \langle \omega_1, \omega_2 \rangle_{\mathfrak{g}}$$

• The Maurer–Cartan action becomes $S=\frac{1}{2}\int_M\langle F,\star F\rangle_{\mathfrak{g}}$

Applications in Quantum Field Theory

Application I: Batalin-Vilkovisky Formalism

Batalin-Vilkovisky Formalism

BV formalism in a nutshell:

- Resolve the quotient space of observables:
 - Introduce ghosts to resolve gauge redundancy ('BRST')
 - Introduce anti-fields to resolve equations of motion
 - ullet Differential Q_{BV} encodes gauge symmetries and equations of motion

$$Q_{\mathsf{BV}}\phi = Q_{\mathsf{BRST}}\phi + \cdots$$
 and $Q_{\mathsf{BV}}\phi^+ = \pm \frac{\delta S_{\mathsf{BRST}}}{\delta \phi} + \cdots$

- BV field space $\mathfrak{L}_{\mathsf{BV}}[1] := T^*[-1](\mathfrak{L}_{\mathsf{BRST}}[1])$ is a graded vector space that comes with a natural symplectic form $\omega_{\mathsf{BV}} := \delta \phi^+ \wedge \delta \phi$ of degree -1, and Q_{BV} is Hamiltonian with Hamiltonian S_{BV} and $Q_{\mathsf{BV}}^2 = 0 \Leftrightarrow \{S_{\mathsf{BV}}, S_{\mathsf{BV}}\}_{\mathsf{BV}} = 0$
- ullet Dually, we obtain a cyclic L_{∞} -algebra $(\mathfrak{L}_{\mathsf{BV}}, \mu_i, \langle -, \rangle)$
- BV action is a Maurer-Cartan action

BV formalism can be applied to any theory but it is essentially the only way when quantising theories with higher gauge symmetries

Yang-Mills Theory in the Batalin-Vilkovisky Formalism

• Let M be a compact oriented Riemannian manifold without boundary and let $\mathfrak g$ be a simple Lie algebra with inner product $\langle -, - \rangle_{\mathfrak g}$. Consider

$$\underbrace{\Omega^0(M,\mathfrak{g})}^{\mu_1:=\operatorname{d}_M} \xrightarrow{\mu_1:=\operatorname{d}_M} \underbrace{\Omega^1(M,\mathfrak{g})}_{=:\mathfrak{L}_1\ni A} \xrightarrow{\mu_1:=\operatorname{d}_M \star \operatorname{d}_M} \underbrace{\Omega^3(M,\mathfrak{g})}_{=:\mathfrak{L}_2\ni A^+} \xrightarrow{\mu_1:=\operatorname{d}_M} \underbrace{\Omega^4(M,\mathfrak{g})}_{=:\mathfrak{L}_3\ni c^+}$$

with

$$\begin{split} \mu_2(c_1,c_2) &\coloneqq [c_1,c_2], \quad \mu_2(c,A) \coloneqq [c,A], \quad \mu_2(c,A^+) \coloneqq [c,A^+], \\ \mu_2(c,c^+) &\coloneqq [c,c^+], \quad \mu_2(A,A^+) \coloneqq [A,A^+], \\ \mu_2(A_1,A_2) &\coloneqq \mathrm{d}_M \star [A_1,A_2] + [A_1,\star \mathrm{d}_M A_2] + [A_2,\star \mathrm{d}_M A_1], \\ \mu_3(A_1,A_2,A_3) &\coloneqq [A_1,\star [A_2,A_3]] + \mathsf{cyclic} \end{split}$$

and $\langle \omega_1, \omega_2 \rangle \coloneqq \pm \int_M \langle \omega_1, \omega_2 \rangle$

• Then, with $a=c+A+A^++c^+$, the Maurer–Cartan action becomes

$$S = \int_{M} \left\{ \frac{1}{2} \langle F, \star F \rangle_{\mathfrak{g}} - \langle A^{+}, \nabla c \rangle_{\mathfrak{g}} + \frac{1}{2} \langle c^{+}, [c, c] \rangle \right\}$$

Relative L_{∞} -Algebras and Homotopy Maurer–Cartan Theory

Cyclic L_{∞} -algebras are suitable for theories on manifolds without boundary or when considering fields with appropriate fall-off. What about theories where we have boundaries?

- A relative L_{∞} -algebra is a pair of L_{∞} -algebras, (\mathfrak{L}, μ_i) and $(\mathfrak{L}^{\partial}, \mu_i^{\partial})$, and a morphism $\phi: (\mathfrak{L}, \mu_i) \to (\mathfrak{L}^{\partial}, \mu_i^{\partial})$ between them
- It is called cyclic provided it comes with a map $\langle -, \rangle_{\mathfrak{L}} : \mathfrak{L} \times \mathfrak{L} \to \mathbb{R}$ of degree -3 that is non-degenerate, graded symmetric, and bilinear as well as a map $\langle -, \rangle_{\mathfrak{L}^{\partial}} : \mathfrak{L}^{\partial} \times \mathfrak{L}^{\partial} \to \mathbb{R}$ of degree -2 that is bilinear such that $(X_1, \ldots, X_{i+1}) \mapsto [X_1, \ldots, X_{i+1}]_{\mathfrak{L}}$ with

$$[X_1, \dots, X_{i+1}]_{\mathfrak{L}} := \langle X_1, \mu_i(X_2, \dots, X_{i+1}) \rangle_{\mathfrak{L}}$$

+
$$\sum_{j+k=i+1} \langle \phi_j(X_1, \dots, X_i), \phi_k(X_{j+1}, \dots, X_{i+1}) \rangle_{\mathfrak{L}^{\partial}}$$

is non-degenerate and cyclic.

• The Maurer-Cartan action now reads as

$$S := \sum_{i>0} \frac{1}{(i+1)!} [a, \dots, a]_{\mathfrak{L}}$$

Example: Yang-Mills Theory

- Let M be a compact oriented Riemannian manifold with boundary ∂M and let $\mathfrak g$ be a simple Lie algebra with inner product $\langle -, \rangle_{\mathfrak g}$. Take $(\mathfrak L, \mu_i)$ as before but because of ∂M , $\langle -, \rangle_{\mathfrak L}$ is not cyclic
- \bullet For $(\mathfrak{L}^{\partial},\mu_{i}^{\partial})$ we take

$$\underbrace{\Omega^0(\partial M,\mathfrak{g})}_{=:\mathfrak{L}_0^{\widehat{o}}\ni\gamma} \xrightarrow{\mu_1^{\widehat{o}}} \underbrace{\Omega^1(\partial M,\mathfrak{g})\oplus\Omega^2(\partial M,\mathfrak{g})}_{=:\mathfrak{L}_1^{\widehat{o}}\ni(\alpha,\beta)} \xrightarrow{\mu_1^{\widehat{o}}} \underbrace{\Omega^3(\partial M,\mathfrak{g})}_{=:\mathfrak{L}_2\ni\alpha^+}$$

with

$$\mu_1^{\partial}(\gamma) := (d_{\partial M}\gamma, 0), \quad \mu_1^{\partial}(\alpha, \beta) := d_{\partial M}\beta,$$

$$\mu_2(\gamma_1, \gamma_2) := [\gamma_1, \gamma_2], \quad \mu_2(\gamma, (\alpha, \beta)) := ([\gamma, \alpha], [\gamma, \beta]),$$

$$\mu_2(\gamma, \alpha^+) := [\gamma, \alpha^+],$$

$$\mu_2((\alpha_1, \beta_1), (\alpha_2, \beta_2)) := [\alpha_1, \beta_2] + [\alpha_2, \beta_1]$$

and

$$\langle \gamma, \alpha^+ \rangle_{\mathfrak{L}^{\partial}} \coloneqq \int_{\partial M} \langle \gamma, \alpha^+ \rangle_{\mathfrak{g}}, \quad \langle (\alpha_1, \beta_1), (\alpha_2, \beta_2) \rangle_{\mathfrak{L}^{\partial}} \coloneqq \int_{\partial M} \langle \alpha_1, \beta_2 \rangle_{\mathfrak{g}}$$

Example: Yang-Mills Theory

 \bullet The morphism $\phi:(\mathfrak{L},\mu_i)\to (\mathfrak{L}^\partial,\mu_i^\partial)$ is now

$$\begin{split} \phi_1(c) \coloneqq c|_{\partial M}, & \ \phi_1(A) \coloneqq (A, \star \mathrm{d}_M A)|_{\partial M}, & \ \phi_1(A^+) \coloneqq A^+|_{\partial M}, \\ & \ \phi_2(A_1, A_2) \coloneqq \star [A_1, A_2]|_{\partial M} \end{split}$$

• Then, with $a=c+A+A^++c^+$, the Maurer–Cartan action becomes

$$S = \sum_{i \geq 0} \frac{1}{(i+1)!} [a, \dots, a]_{\mathfrak{L}}$$
$$= \int_{M} \left\{ \frac{1}{2} \langle F, \star F \rangle_{\mathfrak{g}} - \langle A^{+}, \nabla c \rangle_{\mathfrak{g}} + \frac{1}{2} \langle c^{+}, [c, c] \rangle \right\}$$

Applications in Quantum Field Theory

Application II: Perturbation Theory and Scattering Amplitudes

Homological Perturbation Theory

Homotopy Transfer:

• Start from a deformation retract, that is, two quasi-isomorphic complexes (\mathfrak{L},μ_1) and (\mathfrak{L}',μ_1') with

$$\begin{split} \mathbf{h} & \longleftarrow (\mathfrak{L}, \mu_1) \xrightarrow{\frac{\mathbf{p}}{\mathbf{e}}} (\mathfrak{L}', \mu_1'), \\ 1 &= \mathbf{e} \circ \mathbf{p} + \mathbf{h} \circ \mu_1 + \mu_1 \circ \mathbf{h}, \quad \mathbf{p} \circ \mathbf{e} = 1 \end{split}$$

where h is of degree -1 and called a contracting homotopy

- ullet Consider higher products $\mu_{i>1}$ on ${\mathfrak L}$ as perturbation
- Recursive prescription as how this generates higher products $\mu_{i'>1}$ on \mathfrak{L}' so that (\mathfrak{L}, μ_i) and (\mathfrak{L}', μ_i') are quasi-isomorphic

Applications:

- \bullet For $\mathfrak{L}'\coloneqq H^{\bullet}_{\mu_1}(\mathfrak{L})$: recover minimal model and tree-level Feynman diagram expansion
- Introducing another perturbation $i\hbar\Delta_{\rm BV}$ yields loop-level Feynman diagram expansion
- Recursive character underlies Berends-Giele-type recursion relations which exist for all field theories

Colour-Stripping as Factorisation

$$C_{\infty}$$
-algebra \otimes L_{∞} -algebra $=$ L_{∞} -algebra

Explicit formulas:

$$\hat{\mathfrak{L}} := \mathfrak{C} \otimes \mathfrak{L} = \bigoplus_{k \in \mathbb{Z}} \hat{\mathfrak{L}}_k, \quad \hat{\mathfrak{L}}_k := \bigoplus_{i+j=k} \mathfrak{C}_i \otimes \mathfrak{L}_j,
\hat{\mu}_1(c_1 \otimes \ell_1) := \mathrm{d}c_1 \otimes \ell_1 \pm c_1 \otimes \mu_1(\ell_1)
\vdots$$

Examples:

- For $\mathfrak{C} = \Omega^{\bullet}(M^3)$, $\mathfrak{L} = \mathfrak{g}$ Lie algebra $\to S$ for $\hat{\mathfrak{L}}$ is the action for Chern–Simons theory
- For $\mathfrak{C} = \Omega^{\bullet}(M^d)$, $\mathfrak{L} = \mathfrak{L}_{-d+3} \oplus \cdots \oplus \mathfrak{L}_0$ $\to S$ for $\hat{\mathfrak{L}}$ is d-dimensional higher Chern–Simons theory

Colour-stripping in scattering amplitudes for a general gauge theory: $\mathfrak{L} = \mathfrak{C} \otimes \mathfrak{g}$ with kinematic C_{∞} -algebra \mathfrak{C} and colour Lie algebra \mathfrak{g}

Strictification

Rendering a field theory cubic:

- Simpler to analyse field theories with only cubic vertices
- Any L_{∞} -algebra is quasi-isomorphic to a strict L_{∞} -algebra, that is, a differential graded Lie algebra
- This is called strictification

Examples:

- The 2nd-order formulation of Yang–Mills theory $S_{\mathrm{YM}_2} = \frac{1}{2} \int_M \langle F, \star F \rangle_{\mathfrak{g}}$ is quasi-isomorphic to the 1st-order formulation $S_{\mathrm{YM}_1} = \int_M \langle B, \star (F \frac{1}{2}B) \rangle_{\mathfrak{g}}$ for $B \in \Omega^2(M, \mathfrak{g})$
- More later on . . .

Strictification is used in the context of colour-kinematics duality

Colour-Kinematics Duality

Colour–kinematics duality of scattering amplitudes states that one can arrange them such that the colour-stripped vertex is Lie-like, e.g. Jacobi:

Thus, vertices (i.e. cubic terms in action) should ideally look like

$$g_{ad}f^d_{bc}\ g_{il}k^l_{jk}\ \Phi^{ai}\Phi^{bj}\Phi^{ck}$$

with

- ullet g_{ad} and f_{bc}^d metric and structure constants of gauge Lie algebra
- ullet g_{il} and k_{jk}^l metric and structure constants of kinematic Lie algebra

What is the kinematic Lie algebra homotopy algebraically?

Kinematic Lie algebra

- Factorise, i.e. colour-strip, the differential graded Lie algebra as $\mathfrak{L}=\mathfrak{C}\otimes\mathfrak{g} \text{ with } (\mathfrak{C},\mathsf{d},\mathsf{m}_2) \text{ a differential graded commutative algebra,}$ d the kinematic operator, and m_2 the interactions
- Deformation retract

$$\begin{split} \mathbf{h} & \bigcirc \quad (\mathfrak{C}, \mathsf{d}) \ \stackrel{\mathbf{p}}{\longleftarrow} \ (H_{\mathsf{d}}^{\bullet}(\mathfrak{C}), 0) \\ 1 &= \mathbf{e} \circ \mathbf{p} + \mathsf{d} \circ \mathbf{h} + \mathsf{h} \circ \mathsf{d}, \quad \mathbf{p} \circ \mathbf{e} = 1 \end{split}$$

with h the propagator

- Write h as $h =: \frac{b}{m}$ so that $m = b \circ d + d \circ b$
- If b is a second-order differential operator, the derived bracket

$${X,Y} := \mathsf{b}(\mathsf{m}_2(X,Y)) + m_2(\mathsf{b}(X),Y) \pm m_2(X,\mathsf{b}(Y))$$

is a (shifted) Lie bracket

• The derived bracket maps fields to fields: kinematic Lie bracket

Colour–Kinematics Duality from BV¹¹-Algebras

Algebraic structures:

- $(\mathfrak{C}, \{-, -\})$: Gerstenhaber algebra
- $(\mathfrak{C}, d, b, m_2)$ with $d \circ b + b \circ d = 0$ is a differential graded BV algebra

A BV -algebra is a differential graded commutative algebra $\mathfrak C$ with a differential b of degree -1 that is a second-order differential operator with $d\circ b+b\circ d=\blacksquare$

A theory exhibits colour–kinematics duality, if its L_{∞} -algebra is quasi-isomorphic to a differential graded Lie algebra $\mathfrak{L}=\mathfrak{C}\otimes\mathfrak{g}$ with \mathfrak{C} a differential graded commutative algebra such that \mathfrak{C} admits a BV \square -algebra structure with $\blacksquare=\square$

Examples

Biadjoint scalar field theory, $b = \begin{bmatrix} 1 \end{bmatrix}$

$$S := \int \mathrm{d}^d x \left\{ \frac{1}{2} \varphi_{a\bar{a}} \, \Box \, \varphi^{a\bar{a}} - \frac{\lambda}{3!} f_{abc} f_{\bar{a}\bar{b}\bar{c}} \varphi^{a\bar{a}} \varphi^{b\bar{b}} \varphi^{c\bar{c}} \right\}$$

Self-dual Yang-Mills theory in light-cone gauge, b = [1]

$$S := \int \mathrm{d}^4 x \left\{ \frac{1}{2} \langle \phi, \Box \phi \rangle_{\mathfrak{g}} + \frac{1}{3!} \varepsilon^{\alpha \beta} \langle \phi, [\partial_{\alpha \dot{2}} \phi, \partial_{\beta \dot{2}} \phi] \rangle_{\mathfrak{g}} \right\}$$

Chern–Simons theory, for harmonic forms, $b = \pm \star d \star$

$$S := \int \left\{ \frac{1}{2} \langle A, dA \rangle_{\mathfrak{g}} + \frac{1}{3!} \langle A, [A, A] \rangle_{\mathfrak{g}} - \langle A^+, \nabla c \rangle_{\mathfrak{g}} + \frac{1}{2} \langle c^+, [c, c] \rangle_{\mathfrak{g}} \right\}$$

Applications

Idea: Look for Chern-Simons-type formulations of field theories

For Yang-Mills theory:

- Holomorphic Chern–Simons theory on twistor space (self-dual sector)
- Q-Chern-Simons theory on pure spinor space
- Chern-Simons-like formulation on harmonic superspace

The first two: organising principles for colour-kinematics duality

(just as superspaces for supersymmetry)

Applications in Quantum Field Theory

Application III: Yang-Mills Theory via Twistors

Yang-Mills Constraint System

• Consider Euclidean $\mathcal{N}=3$ superspace $\mathbb{R}^{4|12}_{\mathrm{cpl}}:=\mathbb{R}^{4|0}\times\mathbb{C}^{0|12}$ with coordinates $(x^{\alpha\dot{\alpha}},\eta^{\dot{\alpha}}_i,\theta^{i\alpha})$ and set

$$D^i_{\dot{\alpha}} \coloneqq \partial^i_{\dot{\alpha}} + \theta^{i\alpha} \partial_{\alpha \dot{\alpha}}, \quad D_{i\alpha} \coloneqq \partial_{i\alpha} + \eta^{\dot{\alpha}}_i \partial_{\alpha \dot{\alpha}}$$

and so

$$[D_{i\alpha}, D^j_{\dot{\alpha}}] = 2\delta_i{}^j \partial_{\alpha \dot{\alpha}}$$

For g a Lie algebra, the covariantisation

$$\left[\nabla^{i}_{(\dot{\alpha}},\nabla^{j}_{\dot{\beta})}\right]=0,\ \left[\nabla_{i(\alpha},\nabla_{j\beta)}\right]=0,\ \left[\nabla_{i\alpha},\nabla^{j}_{\dot{\alpha}}\right]=2\delta_{i}{}^{j}\nabla_{\alpha\dot{\alpha}}$$

is the constraint system of $\mathcal{N}=3$ SYM theory; it is equivalent to the equations of motion of $\mathcal{N}=3$ SYM theory on \mathbb{R}^4

Cauchy-Riemann Ambitwistors

- Consider $F := \mathbb{R}^{4|12}_{\mathrm{cpl}} \times \mathbb{C}P^1 \times \mathbb{C}P^1$ with $\lambda_{\dot{\alpha}}$ and μ_{α} as coordinates on $\mathbb{C}P^1 \times \mathbb{C}P^1$ and which comes with a quaternionic structure $(\lambda_{\dot{\alpha}}, \mu_{\alpha}) \mapsto (\hat{\lambda}_{\dot{\alpha}}, \hat{\mu}_{\alpha})$
- Define

$$T_{\mathrm{CR}}^{0,1}F \coloneqq \mathrm{span}\{\hat{E}_{\mathrm{F}}, \hat{E}_{\mathrm{L}}, \hat{E}_{\mathrm{R}}, \hat{E}^{i}, \hat{E}_{i}\},$$

$$\hat{E}_{\mathrm{F}} \coloneqq \mu^{\alpha} \lambda^{\dot{\alpha}} \partial_{\alpha \dot{\alpha}}, \quad \hat{E}_{\mathrm{L}} \coloneqq |\lambda|^{2} \lambda_{\dot{\alpha}} \frac{\partial}{\partial \hat{\lambda}_{\dot{\alpha}}}, \quad \hat{E}_{\mathrm{R}} \coloneqq |\mu|^{2} \mu_{\alpha} \frac{\partial}{\partial \hat{\mu}_{\alpha}},$$

$$\hat{E}^{i} \coloneqq \lambda^{\dot{\alpha}} D_{\dot{\alpha}}^{i}, \quad \hat{E}_{i} \coloneqq \mu^{\alpha} D_{i\alpha}$$

which is an integrable CR structure with $[\hat{E}_i,\hat{E}^j]=2\delta_i{}^j\hat{E}_{\mathrm{F}}$

• Let $A \in \Omega_{CR}^{0,1} \otimes \mathfrak{g}$. Under the assumption that there is a gauge in which $\hat{E}_{L} \, {\it \bot} \, A = 0 = \hat{E}_{R} \, {\it \bot} \, A$, the CR holomorphic Chern–Simons equation

$$\bar{\partial}_{\mathrm{CR}}A + \frac{1}{2}[A, A] = 0$$

on F is equivalent to the $\mathcal{N}=3$ SYM constraint system on $\mathbb{R}^{4|12}_{\mathrm{cpl}}$

Twisted CR Structure

• Consider the CR holomorphic and antiholomorphic coordinates $\eta_i := \eta_i^{\dot{\alpha}} \lambda_{\dot{\alpha}}, \ \theta^i := \theta^{i\alpha} \mu_{\alpha}, \ \bar{\eta}_i := -\frac{\eta_i^{\dot{\alpha}} \hat{\lambda}_{\dot{\alpha}}}{|\lambda|^2}, \ \text{and} \ \bar{\theta}^i := -\frac{\theta^{i\alpha} \hat{\mu}_{\alpha}}{|\mu|^2} \ \text{and} \ \text{the new basis}$

$$\begin{split} T_{\text{CR}}^{0,1} F &= \text{span} \{ \hat{E}_{\text{F}}', \hat{E}_{\text{L}}', \hat{E}_{\text{R}}', \hat{E}'^{i}, \hat{E}'_{i} \}, \\ \hat{E}_{\text{F}}' &\coloneqq \hat{E}_{\text{F}}, \quad \hat{E}_{\text{L}}' \coloneqq \hat{E}_{\text{L}} + \bar{\theta}^{i} \eta_{i} \hat{E}_{\text{F}}, \quad \hat{E}_{\text{R}}' \coloneqq \hat{E}_{\text{R}} - \theta^{i} \bar{\eta}_{i} \hat{E}_{\text{F}}, \\ \hat{E}'^{i} &\coloneqq \hat{E}^{i} - \bar{\theta}^{i} \hat{E}_{\text{F}}, \quad \hat{E}_{i}' \coloneqq \hat{E}_{i} - \bar{\eta}_{i} \hat{E}_{\text{F}} \end{split}$$

with $[\hat{E}_{\mathrm{L}}^{\prime},\hat{E}_{\mathrm{R}}^{\prime}]=2\theta^{i}\eta_{i}\hat{E}_{\mathrm{F}}^{\prime}$

• Set $g := \mathrm{e}^{\bar{\theta}^i \eta_i E_{\mathrm{W}} + \theta^i \bar{\eta}_i E_{\hat{\mathrm{W}}}}$ with $E_{\mathrm{W}} := \frac{\mu^{\alpha} \hat{\lambda}^{\dot{\alpha}}}{|\lambda|^2} \partial_{\alpha \dot{\alpha}}$ and $E_{\hat{\mathrm{W}}} := -\frac{\hat{\mu}^{\alpha} \lambda^{\dot{\alpha}}}{|\mu|^2} \partial_{\alpha \dot{\alpha}}$ and define the twisted CR structure

$$\begin{split} T_{\mathrm{CR,\,tw}}^{0,1} F &\coloneqq \mathrm{span} \{ \hat{V}_{\mathrm{F}}, \hat{V}_{\mathrm{L}}, \hat{V}_{\mathrm{R}}, \hat{V}^{i}, \hat{V}_{i} \}, \\ \hat{V}_{\mathrm{F}} &\coloneqq g \hat{E}_{\mathrm{F}}' g^{-1} = \hat{E}_{\mathrm{F}}, \\ \hat{V}_{\mathrm{L}} &\coloneqq g \hat{E}_{\mathrm{L}}' g^{-1} = \hat{E}_{\mathrm{L}} + \theta^{i} \eta_{i} E_{\hat{\mathrm{W}}}, \quad \hat{V}_{\mathrm{R}} &\coloneqq g \hat{E}_{\mathrm{R}}' g^{-1} = \hat{E}_{\mathrm{R}} + \theta^{i} \eta_{i} E_{\mathrm{W}}, \\ \hat{V}^{i} &\coloneqq g \hat{E}'^{i} g^{-1} = \bar{\partial}^{i}, \quad \hat{V}_{i} &\coloneqq g \hat{E}'_{i} g^{-1} = \bar{\partial}_{i} \end{split}$$

with $[\hat{V}_{\rm L}, \hat{V}_{\rm R}] = 2\theta^i \eta_i \hat{V}_{\rm F}$

Quasi-Isomorphy

- Let $\Omega^{0,\bullet}_{CR,\,\mathrm{tw},\,\mathrm{red}}$ be those elements of $\Omega^{0,\bullet}_{CR,\,\mathrm{tw}}$ that do not have CR antiholomorphic fermionic directions and that depend CR holomorphically on the fermionic coordinates
- The differential graded Lie algebras $(\Omega_{\mathrm{CR}}^{0,\bullet} \otimes \mathfrak{g}, \bar{\partial}_{\mathrm{CR}}, [-,-])$, $(\Omega_{\mathrm{CR,\,tw}}^{0,\bullet} \otimes \mathfrak{g}, \bar{\partial}_{\mathrm{CR,\,tw}}, [-,-])$, and $(\Omega_{\mathrm{CR,\,tw,\,red}}^{0,\bullet} \otimes \mathfrak{g}, \bar{\partial}_{\mathrm{CR,\,tw,\,red}}, [-,-])$ are all quasi-isomorphic
- Hence,

$$\bar{\partial}_{CR, tw} A + \frac{1}{2}[A, A] = 0$$
 with $\hat{V}^i \, \underline{\ } A = 0 = \hat{V}_i \, \underline{\ } A$

is equivalent to the $\mathcal{N}=3$ SYM constraint system on $\mathbb{R}_{\rm cpl}^{4|12}$

• Define the twisted CR holomorphic volume form

$$\Omega_{\mathrm{CR,\,tw}} := v^{\mathrm{F}} \wedge v^{\mathrm{W}} \wedge v^{\hat{\mathrm{W}}} \wedge v^{\hat{\mathrm{U}}} \wedge v^{\mathrm{L}} \wedge v^{\mathrm{R}} \otimes v_1 v_2 v_3 v^1 v^2 v^3$$

and so

$$S := \int \Omega_{\mathrm{CR,\,tw}} \wedge \left\{ \tfrac{1}{2} \big\langle A, \bar{\partial}_{\mathrm{CR,\,tw}} A \big\rangle + \tfrac{1}{3!} \big\langle A, [A,A] \big\rangle \right\}$$

Semi-Classical Equivalence

BV action for twisted CR holomorphic Chern-Simons theory:

$$S_{\text{CRCS}} := \int \Omega_{\text{CR, tw}} \wedge \left\{ \frac{1}{2} \langle A, \bar{\partial}_{\text{CR, tw}} A \rangle + \frac{1}{3!} \langle A, [A, A] \rangle - \langle A^+, \bar{\nabla}_{\text{CR, tw}} c \rangle + \frac{1}{2} \langle C^+, [C, C] \rangle \right\}$$

BV action for first-order $\mathcal{N}=3$ supersymmetric Yang–Mills theory:

$$\begin{split} S_{\mathrm{YM}_1} &:= \int \left\{ \left\langle B, \star F \right\rangle - \frac{1}{2} \left\langle B, \star B \right\rangle - \left\langle A^+, \nabla c \right\rangle - \left\langle B^+, [B, c] \right\rangle \right. \\ &+ \left. \frac{1}{2} \left\langle c^+, [c, c] \right\rangle \right\} + \mathcal{N} = 3 \text{ completion'} \end{split}$$

The theories described by $S_{\rm CRCS}$ and $S_{\rm YM_1}$ are quasi-isomorphic via homotopy transfer, that is, $S_{\rm YM_1}$ is obtained from $S_{\rm CRCS}$ by integrating out infinitely many auxiliary fields

Conclusions

A Dictionary

The Homotopy Algebraic Perspective on perturbative QFT:

Perturbative QFT Homotopy Algebra

fields of ghost number n action principle free part of the action interaction parts semi-classical equivalence	elements of degree $1-n$ in an L_{∞} -algebra cyclic L_{∞} -algebra differential μ_1 higher products $\mu_{i>1}$ L_{∞} -quasi-isomorphism
Feynman diagram expansion	homological perturbation theory (h, p, e)
propagator	contracting homotopy h
gauge fixing	embedding e +
scattering amplitudes	Maurer–Cartan action for minimal model
Berends–Giele recursions	L_{∞} -quasi-morphism to minimal model
colour-stripping	factorising L_{∞} -algebra

Action and scattering amplitudes on equal footing: L_{∞} -algebras

Further Applications

- The double copy i.e. gauge theory ⊗ gauge theory = gravity can be understood via homotopy algebras in terms tensor products of BV[■]-algebras
- Quasi-isomorphisms are not necessarily obtained by homotopy transfer, however, one can always construct a span of L_{∞} -algebras $\mathfrak{L}_1 \leftarrow \mathfrak{L} \rightarrow \mathfrak{L}_2$ such that the arrows are homotopy transfers; for instance, T-duality can be understood this way
- L_{∞} -algebras are the gauge algebras of higher gauge theory and the infinitesimal versions of higher groups \rightarrow higher differential geometry
- Higher structures appear also in other contexts such as fluid dynamics where incompressible fluid flows in $d\geqslant 3$ dimensions can be understood via higher symplectic geometry
- . . .

Thank You!