TCAD simulation III

E. Giulio Villani

24

• Simulation example of 2D PN junction using SDEVICE

• CV

TCAD simulation SDEVICE

- Sentaurus Device is a numeric semiconductor device simulator, capable of simulating the electrical, thermal, and optical characteristics of various semiconductor devices.
- It simulates 1D, 2D, and 3D device behaviour over a wide range of operating conditions, including mixed-mode circuit simulation, combining numerically simulated devices with their compact modeling, which is performed on a SPICE-based circuit simulation level.

1 File Section: input/output files

2 **Electrode Section**: electrode definition, matching those in the input grid

3 **Physics Section**: physics models to use in the simulation

4 Plot Section: variables to plot

5 Math Section: solvers

6 Solve Section: what to solve (IV,CV, Charge injection)

A typical command file of Sentaurus Device consists of several sections (or statement blocks), with each section executing a relatively independent function. The default extension of the command file is _des.cmd, for example, pp1_des.cmd. To start: **sdevice**

• SDEVICE simulation of 2D pn junction

• CV

• The CV analysis is performed by applying a DC bias to the cathode and injecting a small AC signal into it

 $\delta I = Y \delta V$

 δI = current vector δV = voltage vector Y = admittance matrix Y = A + i2πv C

- SDEVICE command file: almost the same as for the DC analysis
 - File Section: input/output files
 Electrode Section: electrode definition, matching those in the input grid
 - **Physics Section**: physics models to use in the simulation
 - System: defines a mixed mode setup consisting of the device(s) and sources attached to it
 Plot Section: variables to plot
 - Math Section: solvers to use

System definition
System {

PNjnct PNjnctDUTA (

"cathode" = SENS_CTH "substrate" = SENS_SUB

Vsource_pset vc (SENS_CTH 0){ dc = 0 }
Vsource_pset vs (SENS_SUB 0){ dc = 0 }

- SDEVICE command file
 - Solve Section: what to solve (IV,CV, Charge injection...)
 - For the CV, a small-signal analysis is performed, i.e. response of the device to small sinusoidal signals superimposed onto the DC bias
 - The Exclude list is used to remove a set of circuit or physical devices from the AC analysis (usually the power supply, to avoid short-circuit the AC analysis)

Solve procedure

Solve {		
	Coupled(Iterations= 500 LineSearchDamping= 1e-4){ Poisson }	
	Coupled(Iterations= 50 LineSearchDamping= 1e-4){ Poisson Electron Hole }	
Plot (FilePrefix = "2D_PNjnct_Temp@Temp@_bias_0V")		
NewCurrentPrefix="2D_PNjnct_Temp@Temp@_CV_REV"		
ramps up the cathode voltage up to the maximum set value Quasistationary (
Voltage=V/dd}		InitialStep=0.01 Increment=1.3 MaxStep=0.025 Minstep=1.e-5 Goal { Parameter=vc.dc
voltage=vuu}) {	ACCoupled (
StartFrequency=1e4 EndFrequency=1e4 NumberOfPoints=1 Decade		
Node(SENS_CTH SENS_SUB) Exclude(vc vs)		
(Time = (Range = (0 1) Intervals = 100))		ACCompute
	{ Poisson Electron Hole })
	}	

- Visualize the resulting mesh using SVISUAL
 - Re-mesh the structure changing the p doping
 - Visualise the meshing
 - CV vs. bias/ cmp with formula
 - Doping from CV profile

 $C_j = \frac{\varepsilon_s}{w} = \sqrt{\frac{e(N_A N_D)}{2\varepsilon_s(N_A + N_D)(V_{bi} - V)}}$

$$n_0(x) = -\frac{C^3}{q\epsilon} (dC/dV)^{-1}.$$

CV plot example – doping 1e13

TCAD and simulation I

Thank you

giulio.villani@stfc.ac.uk

- Simulation example : 2D pn using SDEVICE
- CV / doping from CV

